Radical formula and prime submodules

被引:23
|
作者
Azizi, A. [1 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz 71454, Iran
关键词
arithmetical rings; prime submodules; radical formula;
D O I
10.1016/j.jalgebra.2006.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B be a submodule of an R-module M. The intersection of all prime submodules of M containing B is denoted by rad(B). For every positive integer it, a generalization of E(B) denoted by E-n(B) of M will be introduced. Moreover, < E(B)> subset of < E,(B)> subset of rad(B). In this paper we will study the equality < E-n(B)> = rad(B). It is proved that if R is an arithmetical ring of finite Krull dimension n, then < E-n(B)> = rad(B). (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:454 / 460
页数:7
相关论文
共 50 条
  • [21] ON GENERALIZATIONS OF PRIME SUBMODULES
    Ebrahimpour, M.
    Nekooei, R.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (05) : 919 - 939
  • [22] ON WEAKLY PRIME SUBMODULES
    Atani, S. Ebrahimi
    Farzalipour, F.
    TAMKANG JOURNAL OF MATHEMATICS, 2007, 38 (03): : 247 - 252
  • [23] ON COMPLETELY PRIME SUBMODULES
    Ssevviiri, David
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2016, 19 : 77 - 90
  • [24] Almost prime and weakly prime submodules
    Beiranvand, P. Karimi
    Beyranvand, R.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (07)
  • [25] On chains of prime submodules
    Man, SH
    Smith, PF
    ISRAEL JOURNAL OF MATHEMATICS, 2002, 127 (1) : 131 - 155
  • [26] Unions of prime submodules
    Lu, CP
    HOUSTON JOURNAL OF MATHEMATICS, 1997, 23 (02): : 203 - 213
  • [27] STRONGLY PRIME SUBMODULES
    Naghipour, A. R.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (07) : 2193 - 2199
  • [28] ON ALMOST PRIME SUBMODULES
    Khashan, Hani A.
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 645 - 651
  • [29] ON ALMOST PRIME SUBMODULES
    Hani A.Khashan
    Acta Mathematica Scientia, 2012, 32 (02) : 645 - 651
  • [30] Prime modules and submodules
    Tiras, Y
    Alkan, M
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (11) : 5253 - 5261