Orientation control and nonlinear trajectory tracking of colloidal particles using microfluidics

被引:21
|
作者
Kumar, Dinesh [1 ,2 ]
Shenoy, Anish [3 ]
Li, Songsong [4 ]
Schroeder, Charles M. [1 ,2 ,4 ]
机构
[1] Univ Illinois, Dept Chem & Bimol Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
PATH-FOLLOWING CONTROL; MAGNETIC TWEEZERS; OPTICAL TWEEZERS; MANIPULATION; MICROPARTICLES; NANOPARTICLES; ALIGNMENT; DYNAMICS; ROTATION; NANORODS;
D O I
10.1103/PhysRevFluids.4.114203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Suspensions of anisotropic Brownian particles are commonly encountered in a wide array of applications such as drug delivery and manufacturing of fiber-reinforced composites. Technological applications and fundamental studies of small anisotropic particles critically require precise control of particle orientation over defined trajectories and paths. In this work, we demonstrate robust control over the two-dimensional center-of-mass position and orientation of anisotropic Brownian particles using only fluid flow. We implement a path-following model predictive control scheme to manipulate colloidal particles over defined trajectories in position space, where the speed of movement along the path is a degree of freedom in the controller design. We further explore how the external flow field affects the orientation dynamics of anisotropic particles in steady and transient extensional flow using a combination of experiments and analytical modeling. Overall, this technique offers new avenues for fundamental studies of anisotropic colloidal particles using only fluid flow, without the need for external electric or optical fields.
引用
下载
收藏
页数:24
相关论文
共 50 条
  • [31] Nonlinear predictive control for trajectory tracking of underactuated mechanical systems
    Saidi, Imen
    Touati, Nahla
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (06): : 30 - 33
  • [32] Nonlinear trajectory-tracking control of an autonomous underwater vehicle
    Karkoub, Mansour
    Wu, Hsiu-Ming
    Hwang, Chih-Lyang
    OCEAN ENGINEERING, 2017, 145 : 188 - 198
  • [33] Identification and Trajectory Tracking Control of Nonlinear Singularly Perturbed Systems
    Zheng, Dong-Dong
    Xie, Wen-Fang
    Chai, Tianyou
    Fu, Zhijun
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (05) : 3737 - 3747
  • [34] Trajectory Tracking Nonlinear Hybrid Control of Automated Guided Vehicles
    Sanchez-Rodriguez, Antonio
    Bayona, Eduardo
    Sierra-Garcia, J. Enrique
    Santos, Matilde
    COMPLEXITY, 2024, 2024
  • [35] AUV Trajectory Tracking Based on Nonlinear Model Predictive Control
    Yon, Zheping
    Gong, Peng
    Zhang, Wei
    Wu, Wenhua
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 6055 - 6059
  • [36] Trajectory tracking control for nonlinear time-delay systems
    Márquez-Martínez, LA
    Moog, CH
    KYBERNETIKA, 2001, 37 (04) : 370 - 380
  • [37] Nonlinear Trajectory Tracking Control for Marine Vessels with Additive Uncertainties
    Serrano, Mario E.
    Godoy, Sebastian A.
    Gandolfo, Daniel
    Mut, Vicente A.
    Scaglia, Gustavo J. E.
    INFORMATION TECHNOLOGY AND CONTROL, 2018, 47 (01): : 118 - 130
  • [38] Optimal Control of Colloidal Trajectories in Inertial Microfluidics Using the Saffman Effect
    Ruehle, Felix
    Schaaf, Christian
    Stark, Holger
    MICROMACHINES, 2020, 11 (06)
  • [39] On Event Triggered Trajectory Tracking for Control Affine Nonlinear Systems
    Tallapragada, Pavankumar
    Chopra, Nikhil
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 5377 - 5382
  • [40] Nonlinear Robust Compensation Method for Trajectory Tracking Control of Quadrotors
    Sun, Jia
    Wang, Yuanda
    Yu, Yao
    Sun, Changyin
    IEEE ACCESS, 2019, 7 : 26766 - 26776