Periodic orbits in magnetic billiards

被引:12
|
作者
da Silva, LGGVD [1 ]
de Aguiar, MAM [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
来源
EUROPEAN PHYSICAL JOURNAL B | 2000年 / 16卷 / 04期
关键词
D O I
10.1007/PL00011065
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We propose a simple method to calculate periodic orbits in two-dimensional systems with no symbolic dynamics. The method is based on a line by line scan of the Poincare surface of section and is particularly useful for billiards. We have applied it to the Square and Sinai's billiards subjected to a uniform orthogonal magnetic field and we obtained about 2000 orbits for both systems using absolutely no information about their symbolic dynamics.
引用
收藏
页码:719 / 728
页数:10
相关论文
共 50 条
  • [21] EXAMPLES OF PROJECTIVE BILLIARDS WITH OPEN SETS OF PERIODIC ORBITS
    Fierobe, Corentin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (11) : 3287 - 3301
  • [22] Linear and nonlinear stability of periodic orbits in annular billiards
    Dettmann, Carl P.
    Fain, Vitaly
    CHAOS, 2017, 27 (04)
  • [23] Prevalence of marginally unstable periodic orbits in chaotic billiards
    Altmann, E. G.
    Friedrich, T.
    Motter, A. E.
    Kantz, H.
    Richter, A.
    PHYSICAL REVIEW E, 2008, 77 (01):
  • [24] SKELETONS, PERIODIC ORBITS AND SUPERSCARS IN THE RATIONAL POLYGON BILLIARDS AND ELSEWHERE
    Giller, Stefan
    Janiak, Jaroslaw
    ACTA PHYSICA POLONICA B, 2013, 44 (08): : 1725 - 1764
  • [25] GROWTH OF PERIODIC ORBITS AND GENERALIZED DIAGONALS FOR TYPICAL TRIANGULAR BILLIARDS
    Scheglov, Dmitri
    JOURNAL OF MODERN DYNAMICS, 2013, 7 (01) : 31 - 44
  • [26] Periodic conductance fluctuations and stable orbits in mesoscopic semiconductor billiards
    Bird, JP
    Ferry, DK
    Akis, R
    Ochiai, Y
    Ishibashi, K
    Aoyagi, Y
    Sugano, T
    EUROPHYSICS LETTERS, 1996, 35 (07): : 529 - 534
  • [27] Elliptic Billiards and Ellipses Associated to the 3-Periodic Orbits
    Garcia, Ronaldo
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (06): : 491 - 504
  • [28] Sub-Riemannian geometry and periodic orbits in classical billiards
    Baryshnikov, Yuliy
    Zharnitsky, Vadim
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (04) : 587 - 598
  • [29] Birkhoff normal form and twist coefficients of periodic orbits of billiards*
    Jin, Xin
    Zhang, Pengfei
    NONLINEARITY, 2022, 35 (08) : 3907 - 3943
  • [30] The first Birkhoff coefficient and the stability of 2-periodic orbits on billiards
    Kamphorst, SO
    Pinto-De-Carvalho, S
    EXPERIMENTAL MATHEMATICS, 2005, 14 (03) : 299 - 306