Survival Analysis of COVID-19 Patients in Russia Using Machine Learning

被引:1
|
作者
Metsker, Oleg [1 ]
Kopanitsa, Georgy [2 ]
Yakovlev, Alexey [1 ]
Veronika, Karlina [1 ]
Zvartau, Nadezhda [1 ]
机构
[1] Almazov Natl Med Res Ctr, St Petersburg, Russia
[2] ITMO Univ, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
COVID-19; mortality; risk factors; Russia; CLINICAL CHARACTERISTICS;
D O I
10.3233/SHTI200644
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The current pandemic can likely have several waves and will require a major effort to save lives and provide optimal treatment. The efficient clinical resource planning and efficient treatment require identification of risk groups and specific clinical features of the patients. In this study we develop analyze mortality for COVID19 patients in Russia. We identify comorbidities and risk factors for different groups of patients including cardiovascular diseases and therapy. In the study we used a Russian national COVID registry, that provides sophisticated information about all the COVID-19 patients in Russia. To analyze Features importance for the mortality we have calculated Shapley values for the "mortality" class and ANN hidden layer coefficients for patient lifetime. We calculated the distribution of days spent in hospital before death to show how many days a patient occupies a bed depending on the age and the severity of the disease to allow optimal resource planning and enable age-based risk assessment. Predictors of the days spent in hospital were calculated using Pearson correlation coefficient. Decisions trees were developed to classify the patients into the groups and reveal the lethality factors.
引用
收藏
页码:223 / 227
页数:5
相关论文
共 50 条
  • [21] COVID-19 and the kidney: A retrospective analysis of 37 critically ill patients using machine learning
    Herzog, Anna Laura
    von Jouanne-Diedrich, Holger K.
    Wanner, Christoph
    Weismann, Dirk
    Schlesinger, Tobias
    Meybohm, Patrick
    Stumpner, Jan
    [J]. PLOS ONE, 2021, 16 (05):
  • [22] Prediction of Covid-19 and post Covid-19 patients with reduced feature extraction using Machine Learning Techniques
    Bano, Shehr
    Hussain, Syed Fawad
    [J]. 2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 37 - 42
  • [23] COVID-19 Prediction model using Machine Learning
    Jadi, Amr
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (08): : 247 - 253
  • [24] COVID-19 detection using federated machine learning
    Salam, Mustafa Abdul
    Taha, Sanaa
    Ramadan, Mohamed
    [J]. PLOS ONE, 2021, 16 (06):
  • [25] COVID-19 Infection Detection Using Machine Learning
    Wang, Leo
    Shen, Haiying
    Enfield, Kyle
    Rheuban, Karen
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 4780 - 4789
  • [26] Battling COVID-19 using machine learning: A review
    Chadaga, Krishnaraj
    Prabhu, Srikanth
    Vivekananda, Bhat K.
    Niranjana, S.
    Umakanth, Shashikiran
    [J]. COGENT ENGINEERING, 2021, 8 (01):
  • [27] Analysis on Prediction of COVID-19 with Machine Learning Algorithms
    Sathyaraj, R.
    Kanthavel, R.
    Cavaliere, Luigi Pio Leonardo
    Vyas, Sumit
    Maheswari, S.
    Gupta, Ravi Kumar
    Raja, M. Ramkumar
    Dhaya, R.
    Gupta, Mukesh Kumar
    Sengan, Sudhakar
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2022, 30 (SUPP01) : 67 - 82
  • [28] Application of Machine Learning for COVID-19 Data Analysis
    Shinde-Pawar, Manisha
    Pujari, Rajendra
    Mujawar, Ayesha
    Shah, Alok
    Gala, Deepali
    Patil, Bhaskar
    [J]. JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 (03) : 334 - 338
  • [29] Stratification of the Mortality Risk of COVID-19 Patients by using Machine Learning Algorithms
    Reuther, Janina
    Fomenko, Vlad
    Guelow, Karsten
    Reuther, Stefan
    Spreiter, Lucas
    Schmid, Stephan
    Mueller-Schilling, Martina
    [J]. INTERNIST, 2021, 62 (SUPPL 2): : 197 - 197
  • [30] Predictors for extubation failure in COVID-19 patients using a machine learning approach
    Lucas M. Fleuren
    Tariq A. Dam
    Michele Tonutti
    Daan P. de Bruin
    Robbert C. A. Lalisang
    Diederik Gommers
    Olaf L. Cremer
    Rob J. Bosman
    Sander Rigter
    Evert-Jan Wils
    Tim Frenzel
    Dave A. Dongelmans
    Remko de Jong
    Marco Peters
    Marlijn J. A. Kamps
    Dharmanand Ramnarain
    Ralph Nowitzky
    Fleur G. C. A. Nooteboom
    Wouter de Ruijter
    Louise C. Urlings-Strop
    Ellen G. M. Smit
    D. Jannet Mehagnoul-Schipper
    Tom Dormans
    Cornelis P. C. de Jager
    Stefaan H. A. Hendriks
    Sefanja Achterberg
    Evelien Oostdijk
    Auke C. Reidinga
    Barbara Festen-Spanjer
    Gert B. Brunnekreef
    Alexander D. Cornet
    Walter van den Tempel
    Age D. Boelens
    Peter Koetsier
    Judith Lens
    Harald J. Faber
    A. Karakus
    Robert Entjes
    Paul de Jong
    Thijs C. D. Rettig
    Sesmu Arbous
    Sebastiaan J. J. Vonk
    Mattia Fornasa
    Tomas Machado
    Taco Houwert
    Hidde Hovenkamp
    Roberto Noorduijn Londono
    Davide Quintarelli
    Martijn G. Scholtemeijer
    Aletta A. de Beer
    [J]. Critical Care, 25