Minibands in semiconductor superlattices modelled as Dirac combs (significance of band non-parabolicity)

被引:0
|
作者
Bezák, V [1 ]
机构
[1] Comenius Univ, Fac Math & Phys, Dept Solid State Phys, Bratislava 84248, Slovakia
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalization of the Kronig-Penney problem is put forward with the potential energy V(x) = gamma Sigma(j) delta(x - ja), gamma > 0. A periodic multi-layer ... ABABABA ... is considered: layers A of thickness a are intercalated between layers B of much smaller thickness. In this superlattice, A and B symbolize, respectively, narrow-gap semiconductor layers and barrier layers. The conduction band of the semiconductor A is defined by the dispersion function E(k) which was derived in the Kane two-band theory. Owing to the non-zero value of the parameter gamma, the electron energies inside the interval corresponding to the conduction band of the semiconductor A are organized in minibands separated by forbidden gaps. With E(k) taken in the Kane form, the dispersion law epsilon = E(k) is non-parabolic if E-g (the width of the forbidden gap of the semiconductor A) is finite. This non-parabolicity affects the positions and widths of the minibands. If E-g tends to infinity, the original Kronig-Penney problem is recovered. If E-g decreases, the density of the minibands increases.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 50 条
  • [11] Effects of band non-parabolicity on cavity modes in photonic crystals
    Lue, N. -Y.
    Chen, Y. -S.
    Wei, H. -S.
    Wu, G. Y.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (06)
  • [12] Transient Effects of Band Non-Parabolicity in DGFETs for RF Applications
    Pech, Mathias
    Schulz, Dirk
    2023 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, SISPAD, 2023, : 253 - 256
  • [13] A simple model for analysing the effects of band non-parabolicity in nanostructures
    López-Villanueva, JA
    Jiménez-Tejada, JA
    Palma, A
    Bolívar, SR
    Carceller, JE
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (06) : 532 - 539
  • [14] EXPERIMENTAL-STUDY OF LIGHT HOLE BAND NON-PARABOLICITY IN GERMANIUM
    ZVEREV, VN
    FIZIKA TVERDOGO TELA, 1980, 22 (11): : 3282 - 3287
  • [15] Transmission coefficient and probability of intersubband transitions in GaAs/AlGaAs superlattices: Effect of non-parabolicity
    Moudou, L'houcine
    AL-Hattab, Mohamed
    Rahmani, Khalid
    Maouhoubi, Ibrahim
    Guerroum, Jamal
    Akabli, Hassan
    Chrafih, Younes
    OPTICAL MATERIALS, 2024, 157
  • [16] Non-parabolicity and band gap re-normalisation in Si doped ZnO
    Treharne, R. E.
    Phillips, L. J.
    Durose, K.
    Weerakkody, A.
    Mitrovic, I. Z.
    Hall, S.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (06)
  • [17] EFFECT OF NON-PARABOLICITY ON AMPLIFICATION OF SURFACE PHONONS IN PIEZOELECTRIC SEMICONDUCTOR-FILMS
    WU, CC
    TSAI, J
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (04) : 3344 - 3346
  • [18] Analysis of the influence of band non-parabolicity on the subband structure of a Si quantum wire
    F. M. Gómez-Campos
    S. Rodríguez-Bolívar
    J. E. Carceller
    Journal of Computational Electronics, 2007, 6 : 149 - 152
  • [19] Analysis of the influence of band non-parabolicity on the subband structure of a Si quantum wire
    Gomez-Campos, F. M.
    Rodriguez-Bolivar, S.
    Carceller, J. E.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2007, 6 (1-3) : 149 - 152
  • [20] A compact model for III–V nanowire electrostatics including band non-parabolicity
    Mohit D. Ganeriwala
    Francisco G. Ruiz
    Enrique G. Marin
    Nihar R. Mohapatra
    Journal of Computational Electronics, 2019, 18 : 1229 - 1235