Structure-based cross-docking analysis of antibody-antigen interactions

被引:24
|
作者
Kilambi, Krishna Praneeth [1 ,2 ]
Gray, Jeffrey J. [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Biogen, Cambridge, MA 02142 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家卫生研究院;
关键词
PREDICTION; COMBINATION; REPERTOIRE; REFINEMENT; BACKBONE; PROTEINS;
D O I
10.1038/s41598-017-08414-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Antibody-antigen interactions are critical to our immune response, and understanding the structure-based biophysical determinants for their binding specificity and affinity is of fundamental importance. We present a computational structure-based cross-docking study to test the identification of native antibody-antigen interaction pairs among cognate and non-cognate complexes. We picked a dataset of 17 antibody-antigen complexes of which 11 have both bound and unbound structures available, and we generated a representative ensemble of cognate and non-cognate complexes. Using the Rosetta interface score as a classifier, the cognate pair was the top-ranked model in 80% (14/17) of the antigen targets using bound monomer structures in docking, 35% (6/17) when using unbound, and 12% (2/17) when using the homology-modeled backbones to generate the complexes. Increasing rigid-body diversity of the models using RosettaDock's local dock routine lowers the discrimination accuracy with the cognate antibody-antigen pair ranking in bound and unbound models but recovers additional top-ranked cognate complexes when using homology models. The study is the first structure-based cross-docking attempt aimed at distinguishing antibody-antigen binders from non-binders and demonstrates the challenges to address for the methods to be widely applicable to supplement high-throughput experimental antibody sequencing workflows.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] AI-augmented physics-based docking for antibody-antigen complex prediction
    Gaudreault, Francis
    Sulea, Traian
    Corbeil, Christopher R.
    BIOINFORMATICS, 2025, 41 (04)
  • [32] Enhanced antibody-antigen structure prediction from molecular docking using AlphaFold2
    Francis Gaudreault
    Christopher R. Corbeil
    Traian Sulea
    Scientific Reports, 13
  • [33] Enhanced antibody-antigen structure prediction from molecular docking using AlphaFold2
    Gaudreault, Francis
    Corbeil, Christopher R.
    Sulea, Traian
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [34] Antibody-antigen recognition: A canonical structure paradigm
    LaraOchoa, F
    Almagro, JC
    VargasMadrazo, E
    Conrad, M
    JOURNAL OF MOLECULAR EVOLUTION, 1996, 43 (06) : 678 - 684
  • [35] Characterization of antibody-antigen interactions using biolayer interferometry
    Noy-Porat, Tal
    Alcalay, Ron
    Mechaly, Adva
    Peretz, Eldar
    Makdasi, Efi
    Rosenfeld, Ronit
    Mazor, Ohad
    STAR PROTOCOLS, 2021, 2 (04):
  • [36] A Genetically Encoded Direct Sensor of Antibody-Antigen Interactions
    Mills, Jeremy H.
    Lee, Hyun Soo
    Liu, Chang C.
    Wang, Jiangyun
    Schultz, Peter G.
    CHEMBIOCHEM, 2009, 10 (13) : 2162 - 2164
  • [37] Studies of antibody-antigen interactions by capillary electrophoresis: A review
    Moser, Annette C.
    Trenhaile, Sidney
    Frankenberg, Kati
    METHODS, 2018, 146 : 66 - 75
  • [38] CONFIGURATIONAL EFFECTS IN ANTIBODY-ANTIGEN INTERACTIONS STUDIED BY MICROCALORIMETRY
    MURPHY, KP
    FREIRE, E
    PATERSON, Y
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (02) : 83 - 90
  • [39] Modeling and analysis of a generic cross-docking facility
    Magableh, GM
    Rossetti, MD
    Mason, S
    PROCEEDINGS OF THE 2005 WINTER SIMULATION CONFERENCE, VOLS 1-4, 2005, : 1613 - 1620
  • [40] Capacitance measurements of antibody-antigen interactions in a flow system
    Berggren, C
    Johansson, G
    ANALYTICAL CHEMISTRY, 1997, 69 (18) : 3651 - 3657