Stabilization of non-stationary systems with delay

被引:0
|
作者
Grebenshchikov, B. G. [1 ]
机构
[1] Ural State Univ, Ekaterinburg 620083, Russia
关键词
Lyapunov Function; System Science International; Trigonometric Polynomial; Singular System; Constant Delay;
D O I
10.1134/S1064230710020024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An algorithm of stabilization on an infinite time interval is proposed for a certain non-stationary linear system of differential equations with constant delay, having an exponential factor in the right-hand side.
引用
收藏
页码:178 / 185
页数:8
相关论文
共 50 条
  • [41] The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian
    T. B. Omarov
    G. T. Omarova
    [J]. Celestial Mechanics and Dynamical Astronomy, 1997, 69 : 347 - 355
  • [42] On boundedness of the attainability set of non-stationary bilinear systems
    Ekimov, AV
    Smirnov, AV
    [J]. CONTROL OF OSCILLATIONS AND CHAOS - 1997 1ST INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS 1-3, 1997, : 364 - 365
  • [43] Fuzzy trace identification algorithms for non-stationary systems
    Ben Abdennour, R
    Favier, G
    Ksouri, M
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 1998, 6 (04) : 403 - 417
  • [44] Time-Decaying Bandits for Non-stationary Systems
    Komiyama, Junpei
    Qin, Tao
    [J]. WEB AND INTERNET ECONOMICS, 2014, 8877 : 460 - 466
  • [45] Non-stationary analysis of rotor/casing systems with rubs
    Ding, Q
    Zheng, HP
    Chen, YS
    [J]. INTEGRATING DYNAMICS, CONDITION MONITORING AND CONTROL FOR THE 21ST CENTURY - DYMAC 99, 1999, : 355 - 361
  • [46] Identification and control of non-stationary time delayed systems
    Dréano, P
    Laurent, R
    [J]. ROBUST CONTROL DESIGN 2000, VOLS 1 & 2, 2000, 1-2 : 267 - 271
  • [47] Transient laws of non-stationary queueing systems and their applications
    Bertsimas, D
    Mourtzinou, G
    [J]. QUEUEING SYSTEMS, 1997, 25 (1-4) : 115 - 155
  • [48] A scaling property in the non-stationary dissipative dynamical systems
    Fang, HP
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 151 - 152
  • [49] COMPLETE CONTROLLABILITY OF LINEAR NON-STATIONARY TIMELAG SYSTEMS
    ZABELLO, LE
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1985, (04): : 28 - 34
  • [50] SOME ANALYTICAL PROCEDURES OF NON-STATIONARY CONTROL SYSTEMS
    GIADROSS.G
    TORRIANO, D
    [J]. ELETTROTECNICA, 1969, 56 (8A): : 488 - &