Entanglement of collectively interacting harmonic chains: An effective two-dimensional system

被引:5
|
作者
Unanyan, R. G. [1 ]
Fleischhauer, M.
Bruss, D.
机构
[1] Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany
[2] Tech Univ Kaiserslautern, Fachberich Phys, D-67663 Kaiserslautern, Germany
来源
PHYSICAL REVIEW A | 2007年 / 75卷 / 04期
关键词
D O I
10.1103/PhysRevA.75.040302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the ground-state entanglement of one-dimensional harmonic chains that are coupled to each other by a collective interaction as realized, e.g., in an anisotropic ion crystal. Due to the collective type of coupling, where each chain interacts with every other one in the same way, the total system shows critical behavior in the direction orthogonal to the chains, while the isolated harmonic chains can be gapped and noncritical. We derive lower and most importantly upper bounds for the entanglement, quantified by the von Neumann entropy, between a compact block of oscillators and its environment. For sufficiently large size of the subsystems, the bounds coincide and show that the area law for entanglement is violated by a logarithmic correction.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Renormalization group analysis of a two-dimensional interacting electron system
    Metzner, W
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (11): : 1889 - 1898
  • [22] Parallel magnetoconductance of interacting electrons in a two-dimensional disordered system
    Berkovits, R
    Kantelhardt, JW
    PHYSICAL REVIEW B, 2002, 65 (12) : 1253081 - 1253088
  • [23] Excitonic Bloch equations for a two-dimensional system of interacting excitons
    Rochat, G
    Ciuti, C
    Savona, V
    Piermarocchi, C
    Quattropani, A
    Schwendimann, P
    PHYSICAL REVIEW B, 2000, 61 (20) : 13856 - 13862
  • [24] Optical second-harmonic generation in a two-dimensional system
    Gu, Mingliang
    Zhu, Xun
    Zhang, Chaojin
    MODERN PHYSICS LETTERS B, 2015, 29 (11):
  • [25] Two-dimensional system of strongly interacting electrons in silicon (100) structures
    Dolgopolov, V. T.
    PHYSICS-USPEKHI, 2019, 62 (07) : 633 - 648
  • [26] TWO-DIMENSIONAL M-CHAINS
    BLYUMIN, SL
    AUTOMATION AND REMOTE CONTROL, 1979, 40 (10) : 1448 - 1453
  • [27] Spatial entanglement in two-dimensional artificial atoms
    Pham, Dung N.
    Bharadwaj, Sathwik
    Ram-Mohan, L. R.
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (06)
  • [28] Quantum entanglement in a two-dimensional ion trap
    Wang, CZ
    Fang, MF
    CHINESE PHYSICS, 2003, 12 (03): : 287 - 293
  • [29] Entanglement Entropy in Two-Dimensional String Theory
    Hartnoll, Sean A.
    Mazenc, Edward A.
    PHYSICAL REVIEW LETTERS, 2015, 115 (12)
  • [30] Entanglement scaling in two-dimensional gapless systems
    Ju, Hyejin
    Kallin, Ann B.
    Fendley, Paul
    Hastings, Matthew B.
    Melko, Roger G.
    PHYSICAL REVIEW B, 2012, 85 (16):