Parallel Coordinate Descent Algorithms for Sparse Phase Retrieval

被引:0
|
作者
Yang, Yang [1 ]
Pesavento, Marius [2 ]
Eldar, Yonina C. [3 ]
Ottersten, Bjoern [1 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust, L-1855 Luxembourg, Luxembourg
[2] Tech Univ Darmstadt, Commun Syst Grp, D-64283 Darmstadt, Germany
[3] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
基金
欧盟地平线“2020”; 以色列科学基金会;
关键词
DC Programming; Majorization Minimization; Phase Retrieval; Successive Convex Approximation;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we study the sparse phase retrieval problem, that is, to estimate a sparse signal from a small number of noisy magnitude-only measurements. We propose an iterative soft-thresholding with exact line search algorithm (STELA). It is a parallel coordinate descent algorithm, which has several attractive features: i) fast convergence, as the approximate problem solved at each iteration exploits the original problem structure, ii) low complexity, as all variable updates have a closed-form expression, iii) easy implementation, as no hyperparameters are involved, and iv) guaranteed convergence to a stationary point for general measurements. These advantages are also demonstrated by numerical tests.
引用
收藏
页码:7670 / 7674
页数:5
相关论文
共 50 条
  • [41] DICOD: Distributed Convolutional Coordinate Descent for Convolutional Sparse Coding
    Thomas, Moreau
    Laurent, Oudre
    Nicolas, Vayatis
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [42] Parallel coordinate descent methods for big data optimization
    Peter Richtárik
    Martin Takáč
    Mathematical Programming, 2016, 156 : 433 - 484
  • [43] Group coordinate descent algorithms for nonconvex penalized regression
    Wei, Fengrong
    Zhu, Hongxiao
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (02) : 316 - 326
  • [44] Coordinate descent with arbitrary sampling I: algorithms and complexity
    Qu, Zheng
    Richtarik, Peter
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (05): : 829 - 857
  • [45] Online convex optimization using coordinate descent algorithms
    Lin, Yankai
    Shames, Iman
    Nesic, Dragan
    AUTOMATICA, 2024, 165
  • [46] Architecture and FPGA Design of Dichotomous Coordinate Descent Algorithms
    Liu, Jie
    Zakharov, Yuriy V.
    Weaver, Ben
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2009, 56 (11) : 2425 - 2438
  • [47] Parallel Asynchronous Stochastic Coordinate Descent with Auxiliary Variables
    Yu, Hsiang-Fu
    Hsieh, Cho-Jui
    Dhillon, Inderjit S.
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [48] A Coordinate Descent Algorithm for Sparse Positive Definite Matrix Estimation
    Yuan, Ting
    Wang, Junhui
    STATISTICAL ANALYSIS AND DATA MINING, 2013, 6 (05) : 431 - 442
  • [49] Parallel coordinate descent methods for big data optimization
    Richtarik, Peter
    Takac, Martin
    MATHEMATICAL PROGRAMMING, 2016, 156 (1-2) : 433 - 484
  • [50] Inverse problems with nonnegative and sparse solutions: algorithms and application to the phase retrieval problem
    Pham Quy Muoi
    Dinh Nho Hao
    Sahoo, Sujit Kumar
    Tang, Dongliang
    Nguyen Huu Cong
    Cuong Dang
    INVERSE PROBLEMS, 2018, 34 (05)