Semi-supervised multi-label feature learning via label enlarged discriminant analysis

被引:5
|
作者
Guo, Baolin [1 ]
Tao, Hong [1 ]
Hou, Chenping [1 ]
Yi, Dongyun [1 ]
机构
[1] Natl Univ Def Technol, Changsha 410073, Hunan, Peoples R China
关键词
Multi-label learning; Semi-supervised feature learning; Label enlarged discriminant analysis;
D O I
10.1007/s10115-019-01409-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label learning arises frequently in various domains including computer vision and machine learning and has attracted great interest in the last decades. However, current multi-label classification methods may be deficient in many real applications with following two constraints: (1) lack of sufficient labeled data and (2) high dimensionality in feature space. To address these challenges, in this paper, we propose a new semi-supervised multi-label feature learning algorithm named as label enlarged discriminant analysis. Different from supervised multi-label learning methods, the proposed algorithm can utilize the information from both labeled data and unlabeled data in an effective way. The proposed algorithm enlarges the multi-label information from the labeled data to the unlabeled data through a special designed multi-label label propagation method. Thus, it can take both labeled and unlabeled data into consideration. It then learns a transformation matrix to perform feature learning to reduce the high dimensionality by incorporating the enlarged multi-label information. In this way, the proposed algorithm can preserve more discriminative information by utilizing both labeled and unlabeled data simultaneously. We have analyzed in theory and extensive experimental results are carried out upon several data sets. They all validate the effectiveness of the proposed algorithm.
引用
收藏
页码:2383 / 2417
页数:35
相关论文
共 50 条
  • [21] Semi-supervised imbalanced multi-label classification with label propagation
    Du, Guodong
    Zhang, Jia
    Zhang, Ning
    Wu, Hanrui
    Wu, Peiliang
    Li, Shaozi
    PATTERN RECOGNITION, 2024, 150
  • [22] LOCAL-DRIVEN SEMI-SUPERVISED LEARNING WITH MULTI-LABEL
    Li, Teng
    Yan, Shuicheng
    Mei, Tao
    Kweon, In-So
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1508 - +
  • [23] Using Semi-Supervised Learning in Multi-label Classification Problems
    Santos, Araken M.
    Canuto, Anne M. P.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [24] Semi-supervised dual relation learning for multi-label classification
    Wang, Lichen
    Liu, Yunyu
    Di, Hang
    Qin, Can
    Sun, Gan
    Fu, Yun
    IEEE Transactions on Image Processing, 2021, 30 : 9125 - 9135
  • [25] Applying semi-supervised learning in hierarchical multi-label classification
    Santos, Araken
    Canuto, Anne
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (14) : 6075 - 6085
  • [26] Discrete Semi-supervised Multi-label Learning for Image Classification
    Xie, Liang
    He, Lang
    Shu, Haohao
    Hu, Shengyuan
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 808 - 818
  • [27] Semi-supervised orthogonal discriminant analysis via label propagation
    Nie, Feiping
    Xiang, Shiming
    Jia, Yangqing
    Zhang, Changshui
    PATTERN RECOGNITION, 2009, 42 (11) : 2615 - 2627
  • [28] Semi-supervised Learning for Multi-label Video Action Detection
    Zhang, Hongcheng
    Zhao, Xu
    Wang, Dongqi
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2124 - 2134
  • [29] GRAPH-BASED SEMI-SUPERVISED LEARNING WITH MULTI-LABEL
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1321 - +
  • [30] Multi-label learning vector quantization for semi-supervised classification
    Chen, Ning
    Ribeiro, Bernardete
    Tang, Chaosheng
    Chen, An
    INTELLIGENT DATA ANALYSIS, 2019, 23 (04) : 839 - 853