On variational approximations in quantum molecular dynamics

被引:0
|
作者
Lubich, C [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
quantum dynamics; Dirac-Frenkel-McLachlan variational principle; time-dependent Hartree and Hartree-Fock methods; optimality; error bounds;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Dirac-Frenkel-McLachlan variational principle is the basic tool for obtaining computationally accessible approximations in quantum molecular dynamics. It determines equations of motion for an approximate time-dependent wave function on an approximation manifold of reduced dimension. This paper gives a near-optimality result for variational approximations. It bounds the error in terms of the distance of the exact wave function to the approximation manifold and identifies the parameters that control the deviation of the variational approximation from the best approximation on the manifold.
引用
收藏
页码:765 / 779
页数:15
相关论文
共 50 条
  • [21] UNITARY VARIATIONAL APPROXIMATIONS
    CAREW, J
    ROSENBERG, L
    PHYSICAL REVIEW D, 1973, 7 (04) : 1113 - 1119
  • [22] Explaining Variational Approximations
    Ormerod, J. T.
    Wand, M. P.
    AMERICAN STATISTICIAN, 2010, 64 (02): : 140 - 153
  • [23] Quantum Trajectory Dynamics Based on Local Approximations to the Quantum Potential and Force
    Garashchuk, Sophya
    Rassolov, Vitaly
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (07) : 3906 - 3916
  • [24] Energy conserving approximations to the quantum potential: Dynamics with linearized quantum force
    Garashchuk, S
    Rassolov, VA
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (03): : 1181 - 1190
  • [25] Variational Quantum Algorithms for Computational Fluid Dynamics
    Jaksch, Dieter
    Givi, Peyman
    Daley, Andrew J.
    Rung, Thomas
    AIAA JOURNAL, 2023, 61 (05) : 1885 - 1894
  • [26] Variational quantum algorithms for simulation of Lindblad dynamics
    Watad, Tasneem M.
    Lindner, Netanel H.
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (02):
  • [27] Linearization approximations and Liouville quantum-classical dynamics
    Bonella, Sara
    Ciccotti, Giovanni
    Kapral, Raymond
    CHEMICAL PHYSICS LETTERS, 2010, 484 (4-6) : 399 - 404
  • [28] Quantum Molecular Dynamics
    Ritchie, Burke
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (01) : 1 - 7
  • [29] MONOTONIC CONVERGING VARIATIONAL APPROXIMATIONS TO FUNCTIONAL INTEGRALS IN QUANTUM STATISTICAL-MECHANICS
    BESSIS, D
    MOUSSA, P
    VILLANI, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (11) : 2318 - 2325
  • [30] Variational quantum algorithm for molecular geometry optimization
    Delgado, Alain
    Arrazola, Juan Miguel
    Jahangiri, Soran
    Niu, Zeyue
    Izaac, Josh
    Roberts, Chase
    Killoran, Nathan
    PHYSICAL REVIEW A, 2021, 104 (05)