Persistence in a prey-predator system with disease in the prey

被引:20
|
作者
Mukherjee, D [1 ]
机构
[1] Vivekananda Coll, Dept Math, Kolkata 700063, W Bengal, India
关键词
prey-predator; microparasite; persistence; impermanence; switching; delay;
D O I
10.1142/S0218339003000634
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper deals with a prey-predator system where the prey population is infected by a microparasite. The predator functional response is a function of the weighted sum of prey abundances. This type of functional response reflects the switching mechanism of the predator. We identify the parameters which influence the persistence of all the populations as well as impermanence. The role of delay in the above system is also discussed.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 50 条
  • [21] Allee effect in a prey-predator system
    Hadjiavgousti, Despina
    Ichtiaroglou, Simos
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 36 (02) : 334 - 342
  • [22] Persistence Aspect of a Predator–Prey Model with Disease in the Prey
    Mukherjee D.
    [J]. Differential Equations and Dynamical Systems, 2016, 24 (2) : 173 - 188
  • [23] Viable populations in a prey-predator system
    Bonneuil, N
    Mullers, K
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (03) : 261 - 293
  • [24] FILIPPOV TYPE PREY-PREDATOR SYSTEM FOR SELECTIVE HARVESTING OF PREY
    Yadav, Uganta
    Nayak, A. K.
    Gakkhar, Sunita
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2024, 32 (01) : 109 - 133
  • [25] DYNAMICAL ANALYSIS OF POLLUTED PREY-PREDATOR SYSTEM WITH INFECTED PREY
    Arya, Naina
    Mrig, Palak
    Bhatia, Sumit Kaur
    Chauhan, Sudipa
    Sharma, Puneet
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2021,
  • [26] Spatiotemporal behavior of a prey-predator system with a group defense for prey
    Venturino, Ezio
    Petrovskii, Sergei
    [J]. ECOLOGICAL COMPLEXITY, 2013, 14 : 37 - 47
  • [27] Prey-predator strategies in a multiagent system
    Lenzitti, B
    Tegolo, D
    Valenti, C
    [J]. CAMP 2005: SEVENTH INTERNATIONAL WORKSHOP ON COMPUTER ARCHITECTURE FOR MACHINE PERCEPTION , PROCEEDINGS, 2005, : 184 - 189
  • [28] THE SOLUTION OF A SPECIAL PREY-PREDATOR SYSTEM
    ARRIGONI, M
    STEINER, A
    [J]. STUDIA BIOPHYSICA, 1988, 123 (02): : 125 - 134
  • [29] PERSISTENCE OF A THREE INTERACTING PREY-PREDATOR MODEL WITH REFUGES
    Wang Yuquan(Department of Mathematics
    [J]. 生物数学学报, 1995, (02) : 17 - 25
  • [30] A Prey-Predator Model
    Jadav, Ravindra
    Goveas, Jenice Jean
    Chandra, G. Sharath
    Madhu, Gita
    Udham, P. K.
    Nayak, Pavithra P.
    [J]. CURRENT SCIENCE, 2020, 118 (02): : 180 - 180