Evans functions for periodic waves on infinite cylindrical domains

被引:13
|
作者
Oh, Myunghyun [1 ]
Sandstede, Bjoern [2 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
TRAVELING WAVES; SOLITARY WAVES; STABILITY; INSTABILITY; EQUATIONS; SPECTRA;
D O I
10.1016/j.jde.2009.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Galerkin approximations, an Evans function for spatially periodic waves on infinite cylindrical domains is constructed. It is also shown that the Evans function can be used to define a parity index for periodic waves that detects whether the wave admits an odd number of real unstable eigenvalues. This parity index depends only on local information for the existence problem of the wave: in particular, it uses information about the linear dispersion relation near zero and the orientability of the unstable and stable manifolds along the nonlinear wave. The results are applied to small-amplitude wave trains for a scalar equation on an infinite strip. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:544 / 555
页数:12
相关论文
共 50 条
  • [31] A Carleman estimate for infinite cylindrical quantum domains and the application to inverse problems
    Kian, Yavar
    Phan, Quang Sang
    Soccorsi, Eric
    [J]. INVERSE PROBLEMS, 2014, 30 (05)
  • [32] Rayleigh Waves for Elliptic Systems in Domains with Periodic Boundaries
    Nazarov, S. A.
    [J]. DIFFERENTIAL EQUATIONS, 2022, 58 (05) : 631 - 648
  • [33] On some new criteria for infinite differentiability of periodic functions
    Stepanets O.I.
    Serdyuk A.S.
    Shydlich A.L.
    [J]. Ukrainian Mathematical Journal, 2007, 59 (10) : 1569 - 1580
  • [34] ACOUSTIC-WAVES IN A CYLINDRICAL DUCT WITH INFINITE, HALF-INFINITE, OR FINITE WALL CORRUGATIONS
    LUNDQVIST, L
    BOSTROM, A
    [J]. JOURNAL OF SOUND AND VIBRATION, 1987, 112 (01) : 111 - 124
  • [35] Scattering of Plane Waves From an Infinite Dielectric Periodic Surface
    Wei, Yinyu
    Wu, Zhensen
    Li, Haiying
    Qu, Tan
    [J]. RADIO SCIENCE, 2019, 54 (08) : 758 - 769
  • [36] On periodic and solitary pure gravity waves in water of infinite depth
    J.-M. Vanden-Broeck
    [J]. Journal of Engineering Mathematics, 2014, 84 : 173 - 180
  • [37] Spatially Quasi-Periodic Water Waves of Infinite Depth
    Wilkening, Jon
    Zhao, Xinyu
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (03)
  • [38] Standing waves with infinite group velocity in a temporally periodic medium
    Sabino Martinez-Romero, Juan
    Halevi, P.
    [J]. PHYSICAL REVIEW A, 2017, 96 (06)
  • [39] Natural waves of corrugated waveguide as a constituent of an infinite periodic grating
    Vinichenko, Yu.P.
    Tumanskaya, A.Ye.
    [J]. Soviet journal of communications technology & electronics, 1991, 36 (10): : 55 - 61
  • [40] Periodic waves in two-layer fluids of infinite depth
    Sun, SM
    [J]. ADVANCES IN MULTI-FLUID FLOWS, 1996, : 339 - 345