Analytical C2 smooth blending surfaces

被引:5
|
作者
Zhang, HJ [1 ]
You, LH [1 ]
机构
[1] Bournemouth Univ, Natl Ctr Comp Animat, Poole BH12 5BB, Dorset, England
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2004年 / 20卷 / 08期
关键词
surface blending; curvature continuity; sixth-order partial differential equation; analytical solution;
D O I
10.1016/j.future.2004.05.023
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Two factors are important in the generation of blending surfaces for interactive graphical and CAD applications, computational speed and the degree of smoothness. Most surface-blending methods blend surfaces with tangent continuity. However, curvature continuity has recently become increasingly important in various applications. In this paper, we present a method that is able to achieve curvature continuity based on the use of partial differential equations (PDE). The blending surfaces are generated as the solution to a sixth-order PDE with one vector-valued parameter. To achieve interactive performance, we propose an effective analytical method for the resolution of this sixth-order PDE. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1317 / 1326
页数:10
相关论文
共 50 条
  • [31] Study on the analytical potential energy function for C2, C2+ and C2-
    Wang, R
    Zhu, ZH
    Yang, CL
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2001, 571 : 133 - 138
  • [32] The Architecture of C2 Behavior Model for Analytical Simulation System
    Sun, Lin
    Jiao, Peng
    Zhang, Qi
    Xu, Kai
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1, 2016, : 405 - 410
  • [33] Locally symmetric minimal affine Lagrangian surfaces in C2
    Opozda, Barbara
    MONATSHEFTE FUR MATHEMATIK, 2009, 156 (04): : 357 - 370
  • [34] A class of bivariate rational interpolation surfaces with C2 continuity
    Qin, Xiangbin
    Zhu, Yuanpeng
    Zhu, Yuanpeng (ypzhu@scut.edu.cn), 1600, International Association of Engineers (50): : 601 - 608
  • [35] Rationally convex domains and singular Lagrangian surfaces in C2
    Nemirovski, Stefan
    Siegel, Kyler
    INVENTIONES MATHEMATICAE, 2016, 203 (01) : 333 - 358
  • [36] Locally symmetric minimal affine Lagrangian surfaces in C2
    Barbara Opozda
    Monatshefte für Mathematik, 2009, 156 : 357 - 370
  • [37] Geometric continuity C1G2 of blending surfaces
    Kouibia, A.
    Pasadas, M.
    Sbibih, D.
    Zidna, A.
    Belkhatir, B.
    COMPUTER-AIDED DESIGN, 2013, 45 (03) : 733 - 738
  • [38] Kenmotsu–Bryant Type Representation Formulas for Constant Mean Curvature Surfaces in ” 3(-c2) and S 31(c2)
    Reiko Aiyama
    Kazuo Akutagawa
    Annals of Global Analysis and Geometry, 1999, 17 : 49 - 75
  • [39] No Smooth Julia Sets for Polynomial Diffeomorphisms of C2 with Positive Entropy
    Bedford, Eric
    Kim, Kyounghee
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (04) : 3085 - 3098
  • [40] Smooth Counterexamples to Strong Unique Continuation for a Beltrami System in C2
    Coffman, Adam
    Pan, Yifei
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (12) : 2228 - 2244