Versatile route to core-shell reinforced network nanostructures

被引:8
|
作者
Rusch, Pascal [1 ]
Niemeyer, Fabian [1 ,3 ]
Pluta, Denis [1 ,3 ]
Schremmer, Bjoern [1 ]
Luebkemann, Franziska [1 ]
Rosebrock, Marina [1 ]
Schaefer, Malte [2 ,3 ]
Jahns, Mandy [2 ]
Behrens, Peter [2 ,3 ,4 ]
Bigall, Nadja C. [1 ,3 ,4 ]
机构
[1] Leibniz Univ Hannover, Inst Phys Chem & Electrochem, Callinstr 3A, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Inst Inorgan Chem, Callinstr 9, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, Lab Nano & Quantum Engn, Schneiderberg 35, D-30167 Hannover, Germany
[4] Cluster Excellency PhoenixD Photon Opt & Engn Inn, Hannover, Germany
基金
欧洲研究理事会;
关键词
HIGHLY LUMINESCENT; MECHANICAL-PROPERTIES; CDSE/CDS NANORODS; AEROGELS; SILICA; NANOPARTICLES; NANOCRYSTALS; GELS; HYDROGELS; XEROGELS;
D O I
10.1039/c9nr03645h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work we present the generation of new core-shell network nanostructures of macroscopic dimensionality by a two-step process analogous to the seeded-growth method in colloidal nanoparticle modification. The nanoparticle-based core network is assembled first and in a separate second step it is coated with a continuous metal oxide shell by sol-gel methods. The interparticle contact of the nanoparticles comprising the core network is kept intact throughout the process. By analyzing the local elemental distribution, the shells can be shown to be homogeneous over the macroscopic network monolith. The shell network can be used to considerably reinforce the mechanical strength of the final core-shell network structure.
引用
收藏
页码:15270 / 15278
页数:9
相关论文
共 50 条
  • [1] A versatile solution route for oxide/sulfide core-shell nanostructures and nonlayered sulfide nanotubes
    Zhang, H
    Yang, DR
    Ma, XY
    Que, DL
    [J]. NANOTECHNOLOGY, 2005, 16 (11) : 2721 - 2725
  • [2] Core-Shell nanostructures in electrocatalysis
    Wang, Lei
    Wang, Chao
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [3] Core-shell nanostructures: Titanium on silica
    Zhou, Liang
    Ramirez-Huerta, Mayela
    Soucek, Mark D.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [4] Mechanical behavior of core-shell nanostructures
    Santhapuram, Raghuram R.
    Spearot, Douglas E.
    Nair, Arun K.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2020, 55 (10) : 4303 - 4310
  • [5] Core-shell nanostructures for better thermoelectrics
    Mulla, Rafiq
    Dunnill, Charles W.
    [J]. MATERIALS ADVANCES, 2022, 3 (01): : 125 - 141
  • [6] Silica-metal core-shell nanostructures
    Jankiewicz, B. J.
    Jamiola, D.
    Choma, J.
    Jaroniec, M.
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2012, 170 (1-2) : 28 - 47
  • [7] Core-shell nanostructures for ultrasensitive detection of α-thrombin
    Chen, Xia
    Liu, Hongli
    Zhou, Xiaodong
    Hu, Jiming
    [J]. NANOSCALE, 2010, 2 (12) : 2841 - 2846
  • [8] Plamonic Behavior of Metallic and Core-shell Nanostructures
    Taghian, Fatemeh
    Yousefi, Mansooreh
    Ahmadi, Vahid
    [J]. 2013 21ST IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2013,
  • [9] Nanoengineering Liquid Metal Core-Shell Nanostructures
    Lu, Hongda
    Tang, Shi-Yang
    Zhu, Jiayuan
    Huang, Xumin
    Forgham, Helen
    Li, Xiangke
    Shen, Ao
    Yun, Guolin
    Hu, Jinming
    Zhang, Shiwu
    Davis, Thomas P.
    Li, Weihua
    Qiao, Ruirui
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (06)
  • [10] Analysis and Design of Core-Shell Upconverting Nanostructures
    Wistey, Mark A.
    Patel, Victor
    Loof, Joseph L.
    O'Brien, William A.
    Qi, Meng
    Erdman, Anthony J.
    Stephenson, Chad A.
    [J]. 2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 3248 - 3250