On the upper bound on the average distance from the Fermat-Weber center of a convex body

被引:0
|
作者
Tan, Xuehou [1 ,2 ]
Jiang, Bo [1 ]
机构
[1] Dalian Maritime Univ, Sch Informat Sci & Technol, Linghai Rd 1, Dalian 116026, Peoples R China
[2] Tokai Univ, Sch Informat Sci & Technol, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 2591292, Japan
基金
中国国家自然科学基金;
关键词
Computational geometry; Convex body; Fermat-Weber center; Geometric transformation;
D O I
10.1016/j.comgeo.2021.101769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any compact convex body Qin the plane, the average distance from the Fermat-Weber center of Qto the points in Q is at most 99-50 root 3/36 . Delta(Q) < 0.3444 . Delta(Q), where Delta(Q) denotes the diameter of Q. This improves upon the previous bound of 2(4-root 3)/13 . Delta(Q) < 0.3490 Delta(Q). The average distance from the Fermat-Weber center of Qis calculated by comparing it with that of a circular sector of radius Delta(Q)/2, whose area is the same as that of Q. As compared to the points of that circular sector, the distances of some points of Qto the considered Fermat-Weber center are larger. A method for evaluating the average of all varied distances is given. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 20 条
  • [1] Simple Proof of the Lower Bound on the Average Distance from the Fermat-Weber Center of a Convex Body
    Tan, Xuehou
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105A (05) : 853 - 857
  • [2] New bounds on the average distance from the Fermat-Weber center of a planar convex body
    Dumitrescu, Adrian
    Jiang, Minghui
    Toth, Csaba D.
    DISCRETE OPTIMIZATION, 2011, 8 (03) : 417 - 427
  • [3] New Bounds on the Average Distance from the Fermat-Weber Center of a Planar Convex Body
    Dumitrescu, Adrian
    Toth, Csaba D.
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 132 - +
  • [4] Improved bounds on the average distance to the Fermat-Weber center of a convex object
    Abu-Affash, A. Karim
    Katz, Matthew J.
    INFORMATION PROCESSING LETTERS, 2009, 109 (06) : 329 - 333
  • [5] On the Fermat-Weber center of a convex object
    Carmi, P
    Har-Peled, S
    Katz, MJ
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 32 (03): : 188 - 195
  • [6] FERMAT-WEBER PROBLEM WITH CONVEX COST FUNCTIONS
    CORDELLIER, F
    FIOROT, JC
    MATHEMATICAL PROGRAMMING, 1978, 14 (03) : 295 - 311
  • [7] A Note on the Upper Bound of Average Distance via Irregularity Index
    Akgunes, Nihat
    Cangul, Ismail Naci
    Cevik, Ahmet Sinan
    MATHEMATICAL METHODS IN ENGINEERING: THEORETICAL ASPECTS, 2019, 23 : 267 - 271
  • [8] Determination of a convex body from the average of projections and stability results
    Spriestersbach, KK
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 123 : 561 - 569
  • [9] FURTHER NOTE ON DENSITY FUNCTIONS AND AVERAGE DISTANCE FROM CENTER
    WHITE, LJ
    JOURNAL OF URBAN ECONOMICS, 1977, 4 (02) : 218 - 219
  • [10] PULSAR NAVIGATION: DEFINING AN UPPER BOUND FOR DISTANCE FROM REFERENCE
    Borissov, Stoian
    Bridges, Grayson
    Vlasak, William
    Butcher, Jeffrey
    Mortari, Daniele
    ASTRODYNAMICS 2017, PTS I-IV, 2018, 162 : 2843 - 2859