On nonhomogeneous boundary value problems for the stationary Navier-Stokes equations in two-dimensional symmetric semi-infinite outlets

被引:6
|
作者
Chipot, M. [2 ]
Kaulakyte, K. [1 ,2 ]
Pileckas, K. [1 ]
Xue, W. [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Stationary Navier-Stokes equations; nonhomogeneous boundary value problem; nonzero flux; two-dimensional noncompact domains; symmetry; GENERAL OUTFLOW CONDITION; LERAYS PROBLEM; FLUX PROBLEM; EXISTENCE; FLOW; DOMAINS; SYSTEM;
D O I
10.1142/S0219530515500268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stationary nonhomogeneous Navier-Stokes problem in a two-dimensional symmetric domain with a semi-infinite outlet (for instance, either paraboloidal or channel-like). Under the symmetry assumptions on the domain, boundary value and external force, we prove the existence of at least one weak symmetric solution without any restriction on the size of the fluxes, i.e. the fluxes of the boundary value a over the inner and the outer boundaries may be arbitrarily large. Only the necessary compatibility condition (the total flux is equal to zero) has to be satisfied. Moreover, the Dirichlet integral of the solution can be finite or infinite depending on the geometry of the domain.
引用
收藏
页码:543 / 569
页数:27
相关论文
共 50 条