Analogues to Fermat primes related to Pell's equation

被引:0
|
作者
Koehler, Guenter [1 ]
机构
[1] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
关键词
Fermat primes; Pell's equation; Modular forms;
D O I
10.1007/s00013-009-0080-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The coefficients of some weight 3 modular forms give reason to study primes of the form p = 2x(2) - 1 = 2dy(2) + 1. If x(a), y(a) are the positive solutions of Pell's equation x(2) - dy(2) = 1, given by x(a) + y(a)root d = (x(1) + y(1)root d)(a), and if p(a) = 2x(a)(2) - 1 is prime, then a = 2(m) is a power of 2. So there are analogues to the Fermat numbers 2(a) + 1.
引用
收藏
页码:49 / 52
页数:4
相关论文
共 50 条
  • [41] Minimality of topological matrix groups and Fermat primes
    Megrelishvili, M.
    Shlossberg, M.
    TOPOLOGY AND ITS APPLICATIONS, 2022, 322
  • [42] POLYNOMIAL PELL'S EQUATION AND PERIODS OF QUADRATIC IRRATIONALS
    Yokota, H.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2007, 8 (01): : 135 - 144
  • [43] DISTRIBUTION OF ANALOGUES OF PRIMES
    FOGELS, EK
    DOKLADY AKADEMII NAUK SSSR, 1962, 146 (02): : 318 - &
  • [44] On the negative Pell equation
    Golubeva E.P.
    Journal of Mathematical Sciences, 2011, 178 (2) : 144 - 149
  • [45] Pell equation and randomness
    József Beck
    Periodica Mathematica Hungarica, 2015, 70 : 1 - 108
  • [46] AN APPLICATION OF PELL EQUATION
    WEGENER, DP
    FIBONACCI QUARTERLY, 1981, 19 (05): : 450 - 451
  • [47] On the negative Pell equation
    Fouvry, Etienne
    Klueners, Juergen
    ANNALS OF MATHEMATICS, 2010, 172 (03) : 2035 - 2104
  • [48] Pell equation and randomness
    Beck, Jzsef
    PERIODICA MATHEMATICA HUNGARICA, 2015, 70 (01) : 1 - 108
  • [49] A NOTE ON THE PELL EQUATION
    METZGER, JM
    KALER, SP
    FIBONACCI QUARTERLY, 1987, 25 (03): : 216 - 220
  • [50] Solving the Pell equation
    Williams, HC
    NUMBER THEORY FOR THE MILLENNIUM III, 2002, : 397 - 435