ON COMMUTING AND SEMI-COMMUTING POSITIVE OPERATORS

被引:6
|
作者
Gao, Niushan [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
Ideal irreducible operator; compact positive operator; commuting operators; semi-commuting operators; INVARIANT SUBSPACES; SEMIGROUPS; THEOREMS;
D O I
10.1090/S0002-9939-2014-12002-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a positive compact operator on a Banach lattice. We prove that if either [K > or < K] is ideal irreducible, then[K > = < K] = L+(X) boolean AND {K}'. We also establish the Perron-Frobenius Theorem for such operators K. Finally, we apply our results to answer questions posed by Abramovich and Aliprantis (2002) and Braci c et al. (2010).
引用
收藏
页码:2733 / 2745
页数:13
相关论文
共 50 条
  • [11] Commuting Eulerian operators
    Ma, Shi-Mei
    Qi, Hao
    Yeh, Jean
    Yeh, Yeong-Nan
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 355 - 361
  • [12] On Extended Commuting Operators
    Jung, Sungeun
    Kim, Hyoungji
    Ko, Eungil
    FILOMAT, 2021, 35 (03) : 883 - 893
  • [13] PAIRS OF COMMUTING OPERATORS
    VASILESCU, FH
    STUDIA MATHEMATICA, 1978, 62 (02) : 203 - 207
  • [14] OPERATORS COMMUTING WITH TRANSLATIONS
    EDWARDS, RE
    PACIFIC JOURNAL OF MATHEMATICS, 1966, 16 (02) : 259 - &
  • [15] ON COMMUTING DIFFERENTIAL OPERATORS
    Weikard, R.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2000,
  • [16] Approximating commuting operators
    Holbrook, J
    Omladic, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 327 (1-3) : 131 - 149
  • [17] Aggregation operators and commuting
    Saminger-Platz, Susanne
    Mesiar, Radko
    Dubois, Didier
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (06) : 1032 - 1045
  • [18] On almost commuting operators
    Manuilov, VM
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1997, 31 (03) : 212 - 213
  • [19] ON ALMOST COMMUTING OPERATORS
    ACKERMANS, STM
    VANEIJNDHOVEN, SJL
    MARTENS, FJL
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1983, 86 (04): : 385 - 391
  • [20] LIFTING COMMUTING OPERATORS
    DOUGLAS, RG
    MUHLY, PS
    PEARCY, C
    MICHIGAN MATHEMATICAL JOURNAL, 1968, 15 (04) : 385 - &