Demonstration of a coupled floating offshore wind turbine analysis with high-fidelity methods

被引:29
|
作者
Leble, Vladimir [1 ]
Barakos, George [1 ]
机构
[1] Univ Glasgow, Sch Engn, James Watt South Bldg, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Offshore wind turbine; Floating; CFD; SPH; Multi-body; Dynamics;
D O I
10.1016/j.jfluidstructs.2016.02.001
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents results of numerical computations for floating off-shore wind turbines using, as an example, a machine of 10-MW rated power. The aerodynamic loads on the rotor are computed using the Helicopter Multi-Block flow solver developed at the University of Liverpool. The method solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. Hydrodynamic loads on the support platform are computed using the Smoothed Particle Hydrodynamics method, which is mesh-free and represents the water and floating structures by a set of discrete elements, referred to as particles. The motion of the floating offshore wind turbine is computed using a Multi-Body Dynamic Model of rigid bodies and frictionless joints. Mooring cables are modelled as a set of springs and dampers. All solvers were validated separately before coupling, and the results are presented in this paper. The importance of coupling is assessed and the loosely coupled algorithm used is described in detail alongside the obtained results. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:272 / 293
页数:22
相关论文
共 50 条
  • [21] COUPLED AERODYNAMIC AND HYDROELASTIC ANALYSIS OF AN OFFSHORE FLOATING WIND TURBINE SYSTEM UNDER WIND AND WAVE LOADS
    Iijima, Kazuhiro
    Kim, Junghyun
    Fujikubo, Masahiko
    PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING 2010, VOL 3, 2010, : 241 - 248
  • [22] ON MOTION AND HYDROELASTIC ANALYSIS OF A FLOATING OFFSHORE WIND TURBINE
    Lamei, Azin
    Hayatdavoodi, Masoud
    Wong, Carlos
    Tang, Bin
    PROCEEDINGS OF THE ASME 38TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2019, VOL 10, 2019,
  • [23] Coupled modeling and structural vibration control for floating offshore wind turbine
    Yang, J. J.
    He, E. M.
    RENEWABLE ENERGY, 2020, 157 (157) : 678 - 694
  • [24] COUPLED DYNAMIC RESPONSE OF A SPAR TYPE FLOATING OFFSHORE WIND TURBINE
    Peng, Cheng
    Yan, Fasuo
    Zhang, Jun
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9A: OCEAN RENEWABLE ENERGY, 2014,
  • [25] DEMONSTRATION OF A STANDALONE, DESCRIPTIVE, AND PREDICTIVE DIGITAL TWIN OF A FLOATING OFFSHORE WIND TURBINE
    Stadtmann, Florian
    Wassertheurer, Henrik Gusdal
    Rasheed, Adil
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 8, 2023,
  • [26] On the modelling of a floating offshore wind turbine
    Henderson, AR
    Patel, MH
    WIND ENERGY, 2003, 6 (01) : 53 - 86
  • [27] On the Controllability of a Floating Offshore Wind Turbine
    Abbas, Nikhar J.
    Pao, Lucy
    NAWEA WINDTECH 2019, 2020, 1452
  • [28] Evaluating the importance of mooring line model fidelity in floating offshore wind turbine simulations
    Hall, Matthew
    Buckham, Brad
    Crawford, Curran
    WIND ENERGY, 2014, 17 (12) : 1835 - 1853
  • [29] A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine
    Cheng, Ping
    Huang, Yang
    Wan, Decheng
    OCEAN ENGINEERING, 2019, 173 : 183 - 196
  • [30] PRELIMINARY ANALYSIS ABOUT COUPLED RESPONSE OF OFFSHORE FLOATING WIND TURBINE SYSTEM IN TIME DOMAIN
    Liu, Geliang
    Hu, Zhiqang
    Duan, Fei
    PROCEEDINGS OF THE ASME 34TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2015, VOL 9, 2015,