Prediction of pain in knee osteoarthritis patients using machine learning: Data from Osteoarthritis Initiative

被引:3
|
作者
Alexos, Antonios [1 ]
Kokkotis, Christos [2 ]
Moustakidis, Serafeim [3 ]
Papageorgiou, Elpiniki [4 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA
[2] Ctr Res & Technol Hellas, Inst Bioecon & Agritechnol, Volos, Greece
[3] AIDEAS OU, Narva Mnt 5, Tallinn, Harju Maakond, Estonia
[4] Univ Thessaly, Fac Technol, Energy Syst Dept, Geopolis Campus, Larisa 41500, Greece
基金
欧盟地平线“2020”;
关键词
machine learning; knee osteoarthritis; pain prediction; feature selection; physical function; knee joint; IDENTIFICATION;
D O I
10.1109/iisa50023.2020.9284379
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Knee Osteoarthritis(KOA) is a serious disease that causes a variety of symptoms, such as severe pain and it is mostly observed in the elder people. The main goal of this study is to build a prognostic tool that will predict the progression of pain in KOA patients using data collected at baseline. In order to do that we leverage a feature importance voting system for identifying the most important risk factors and various machine learning algorithms to classify, whether a patient's pain with KOA, will stabilize, increase or decrease. These models have been implemented on different combinations of feature subsets, and results up to 84.3% have been achieved with only a small amount of features. The proposed methodology demonstrated unique potential in identifying pain progression at an early stage therefore improving future KOA prevention efforts.
引用
收藏
页码:240 / 246
页数:7
相关论文
共 50 条
  • [21] Peripheral Blood DNA Methylation-based Machine Learning Models for Prediction of Knee Osteoarthritis Progression: Biospecimens and Data from the Osteoarthritis Initiative and Johnston County Osteoarthritis Project
    Dunn, Chris
    Sturdy, Cassandra
    Velasco, Cassandra
    Schlupp, Leoni
    Prinz, Emmaline
    Izda, Vladislav
    Arbeeva, Liubov
    Golightly, Yvonne
    Nelson, Amanda
    Jeffries, Matlock
    [J]. ARTHRITIS & RHEUMATOLOGY, 2022, 74 : 2217 - 2219
  • [22] A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative
    Brahim, Abdelbasset
    Jennane, Rachid
    Riad, Rabia
    Janvier, Thomas
    Khedher, Laila
    Toumi, Hechmi
    Lespessailles, Eric
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 73 : 11 - 18
  • [23] Knee Osteoarthritis Detection Using Power Spectral Density: Data from the OsteoArthritis Initiative
    Brahim, Abdelbasset
    Riad, Rabia
    Jennane, Rachid
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II, 2019, 11679 : 480 - 487
  • [24] BISPHOSPHONATE USE REDUCES PAIN AND RADIOLOGICAL PROGRESSION IN PATIENTS WITH SYMPTOMATIC AND RADIOGRAPHIC KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Laslett, L. L.
    Kingsbury, S. R.
    Hensor, E. M.
    Bowes, M. A.
    Conaghan, P. G.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2013, 21 : S227 - S228
  • [25] BISPHOSPHONATE USE REDUCES PAIN AND RADIOLOGICAL PROGRESSION IN PATIENTS WITH SYMPTOMATIC AND RADIOGRAPHIC KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Laslett, L.
    Kingsbury, S.
    Hensor, E.
    Bowes, M.
    Conaghan, P.
    [J]. INTERNAL MEDICINE JOURNAL, 2013, 43 : 6 - 6
  • [26] Rapid Progression of Knee Pain and Osteoarthritis Biomarkers Greatest for Patients with Combined Obesity and Depression: Data from the Osteoarthritis Initiative
    Jacobs, Cale A.
    Vranceanu, Ana-Maria
    Thompson, Katherine L.
    Lattermann, Christian
    [J]. CARTILAGE, 2020, 11 (01) : 38 - 46
  • [27] An Automatic Knee Osteoarthritis Diagnosis Method Based on Deep Learning: Data from the Osteoarthritis Initiative
    Wang, Yifan
    Wang, Xianan
    Gao, Tianning
    Du, Le
    Liu, Wei
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [28] KNEE REPLACEMENT RISK PREDICTION MODELING fOR KNEE OSTEOARTHRITIS USING CLINICAL AND MAGNETIC RESONANCE IMAGE FEATURES: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Yang, Li
    Xiao, Feng
    Cheng, Chong
    [J]. JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2023, 23 (08)
  • [29] Phenotypes of osteoarthritis-related knee pain and their transition over time: data from the osteoarthritis initiative
    Ye, Jing
    Xie, Dongxing
    Li, Xiaoxiao
    Lu, Na
    Zeng, Chao
    Lei, Guanghua
    Wei, Jie
    Li, Jiatian
    [J]. BMC MUSCULOSKELETAL DISORDERS, 2024, 25 (01)