Lower bounds of operators on weighted lp spaces and Lorentz sequence spaces

被引:14
|
作者
Jameson, GJO
Lashkaripour, R
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Sistan & Baluchistan, Fac Sci, Zahedan, Iran
关键词
D O I
10.1017/S0017089500020061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem considered is the determination of "lower bounds" of matrix operators on the spaces l(p(w)) or d(w, p). Under fairly general conditions, the solution is the same for both spaces and is given by the infimum of a certain sequence. Specific cases are considered, with the weighting sequence defined by w(n) = 1/n(alpha). The exact solution is found for the Hilbert operator. For the averaging operator, two different upper bounds are given, and for certain values of p and alpha it is shown that the smaller of these two bounds is the exact solution.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 50 条
  • [41] Lower bounds for norms of products of polynomials on Lp spaces
    Carando, Daniel
    Pinasco, Damian
    Tomas Rodriguez, Jorge
    STUDIA MATHEMATICA, 2013, 214 (02) : 157 - 166
  • [42] THE ESSENTIAL NORM OF MULTIPLICATION OPERATORS ON LORENTZ SEQUENCE SPACES
    Castillo, Rene E.
    Ramos-Fernandez, Julio C.
    Salas-Brown, Margot
    REAL ANALYSIS EXCHANGE, 2016, 41 (01) : 245 - 252
  • [43] Norm-attaining operators into Lorentz sequence spaces
    Acosta, Maria D.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 225 - 235
  • [44] Composite convolution operators on weighted sequence spaces
    Singh V.P.
    Komal B.S.
    Lobachevskii Journal of Mathematics, 2014, 35 (1) : 1 - 6
  • [45] A PRIORI BOUNDS FOR ELLIPTIC OPERATORS IN WEIGHTED SOBOLEV SPACES
    Boccia, Serena
    Salvato, Maria
    Transirico, Maria
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (02): : 307 - 318
  • [46] Continuity of Superposition Operators on the Double Sequence Spaces Lp
    Sagir, Birsen
    Gungor, Nihan
    FILOMAT, 2015, 29 (09) : 2107 - 2118
  • [47] Maximal operators and singular integrals on the weighted Lorentz and Morrey spaces
    Nguyen Minh Chuong
    Dao Van Duong
    Kieu Huu Dung
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (01) : 201 - 228
  • [48] Calderon-Zygmund Operators and Commutators on Weighted Lorentz Spaces
    Carro, Maria J.
    Li, Hongliang
    Soria, Javier
    Sun, Qinxiu
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (09) : 8979 - 8990
  • [49] Compact weighted composition operators on Orlicz-Lorentz spaces
    Arora, S. C.
    Datt, Gopal k
    ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (3-4): : 567 - 578
  • [50] Calderón–Zygmund Operators and Commutators on Weighted Lorentz Spaces
    María J. Carro
    Hongliang Li
    Javier Soria
    Qinxiu Sun
    The Journal of Geometric Analysis, 2021, 31 : 8979 - 8990