Metal-organic framework derived bimetal oxide CuCoO2 as efficient electrocatalyst for the oxygen evolution reaction

被引:22
|
作者
Gao, Han [1 ,2 ]
Yang, Miao [1 ]
Du, Zijuan [1 ]
Liu, Xing [1 ]
Dai, Xianglong [1 ]
Lin, Kun [1 ]
Bao, Xiao-Qing [3 ]
Li, Hong [1 ]
Xiong, Dehua [1 ,2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Chinese Acad Sci, Inst Opt & Elect, State Key Lab Opt Technol Nanofabricat & Microeng, Chengdu 610209, Peoples R China
关键词
TEMPERATURE HYDROTHERMAL SYNTHESIS; BIFUNCTIONAL OXYGEN; NANOPARTICLES; PEROVSKITE; CATALYST; CUFEO2; REDUCTION; PERFORMANCE; STABILITY; GRAPHENE;
D O I
10.1039/d2dt00517d
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Metal-organic framework (MOF) materials with tunable porous morphology, controlled crystalline structure, various compositions, and high specific surface area are widely used as precursors to synthesize electrocatalysts for water splitting, which is beneficial for improving their oxygen evolution reaction (OER) performance. Using ZIF-67 as a Co source and Cu-BTC as a Cu source, hexagonal MOF-derived CuCoO2 (MOF-CCO) nanocrystals with the size of similar to 288 nm were prepared through a one-step solvothermal method. The influence of the content of the precursor solvents (absolute ethanol and deionized water), reaction temperature, mass ratio of reactants, NaOH addition, and reactant concentration of precursors on the structure and morphology of the products was investigated. The optimal CuCoO2 nanocrystals (MOF-CCO1) around 288 nm present the highest OER activity, such as a low overpotential of 364.7 mV at 10 mA cm(-2), a small Tafel slope of 64.1 mV dec(-1), and attractive durability in 1.0 M KOH solution. The XPS results showed that the higher catalytic efficiency of MOF-CCO1 nanocrystals could be due to the oxygen vacancies caused by lattice oxygen loss, the increase of OH- content on the surface, and the synergistic effect of Cu2+/Cu+ and Co2+/Co3+ redox pairs. Finally, a possible OER mechanism for MOF-CCO nanocrystals of water splitting was proposed. This study provides a new approach for the preparation of delafossite nanomaterials and for the improvement of their OER performances.
引用
收藏
页码:5997 / 6006
页数:10
相关论文
共 50 条
  • [41] Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction
    Rui Jiang
    Qian Li
    Xue Zheng
    Weizhe Wang
    Shuangbao Wang
    Zhimou Xu
    Jiabin Wu
    Nano Research, 2022, 15 : 7917 - 7924
  • [42] Effect of nickel doping on the structure, morphology and oxygen evolution reaction performance of Cu-BTC derived CuCoO2
    Yang, Miao
    Han, Na
    Shi, Lifen
    Gao, Han
    Liu, Xing
    Mi, Yue
    Zeng, Xianwei
    Bai, Jilin
    Xiong, Dehua
    DALTON TRANSACTIONS, 2022, 51 (22) : 8757 - 8765
  • [43] Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction
    Jiang, Rui
    Li, Qian
    Zheng, Xue
    Wang, Weizhe
    Wang, Shuangbao
    Xu, Zhimou
    Wu, Jiabin
    NANO RESEARCH, 2022, 15 (09) : 7917 - 7924
  • [44] Metal-organic framework derived NiSe2/CeO2 nanocomposite as a high-performance electrocatalyst for oxygen evolution reaction (OER)
    Taherinia, D.
    Moravvej, S. H.
    Moazzeni, Mohammad
    Akbarzadeh, E.
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (11): : 2994 - 3000
  • [45] Nanoporous carbon derived from a functionalized metal-organic framework as highly efficient oxygen reduction electrocatalyst
    Wang, Yuan
    Feng, Pingyun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [46] Regulating the coordination environment of a metal-organic framework for an efficient electrocatalytic oxygen evolution reaction
    Lv, Enjun
    Yong, Jiayi
    Wen, Jinguli
    Song, Zhirong
    Liu, Yi
    Khan, Usman
    Gao, Junkuo
    ENERGY ADVANCES, 2022, 1 (09): : 641 - 647
  • [47] Ultrathin trimetallic metal-organic framework nanosheets for highly efficient oxygen evolution reaction
    Ding, Mengmeng
    Chen, Jing
    Jiang, Meiwen
    Zhang, Xiaojun
    Wang, Guangfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (23) : 14163 - 14168
  • [48] Construction of trimetallic metal-organic framework nanoarrays for efficient and stable oxygen evolution reaction
    Na, Guohao
    Wu, Yuewen
    Mei, Zhixin
    Chen, Mingpeng
    Dequan, Li
    Sun, Huachuan
    Chen, Yun
    Zhou, Tong
    Zhao, Jianhong
    Zhang, Yumin
    Zhang, Jin
    Liu, Feng
    Cui, Hao
    Liu, Qingju
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 86 : 1278 - 1284
  • [49] Orientation-Adjustable Metal-Organic Framework Nanorods for Efficient Oxygen Evolution Reaction
    Xu, Zichen
    Yeh, Chia-Lin
    Jiang, Yuanjuan
    Yun, Xinru
    Li, Chun-Ting
    Ho, Kuo-Chuan
    Lin, Jiann T.
    Lin, Ryan Yeh-Yung
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) : 28242 - 28251
  • [50] Hofmann-type Metal-Organic Framework Based Bimetal/Carbon Nanosheets for Efficient Electrocatalytic Oxygen Evolution
    Wang, Bo
    Wang, Xue
    Yong, Jiayi
    Song, Zhirong
    Chen, Jiazhen
    Wang, Xusheng
    Gao, Junkuo
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2022, 648 (09):