Special equitorsion almost geodesic mappings of the third type of non-symmetric affine connection spaces

被引:19
|
作者
Stankovic, Mica S. [1 ]
机构
[1] Univ Nis, Fac Sci & Math, Nish, Serbia
关键词
Almost geodesic mappings; Affine connected space; Almost geodesic mappings of the third type; Equitorsion mappings; Property of reciprocity; RIEMANNIAN-MANIFOLDS; EQUATIONS;
D O I
10.1016/j.amc.2014.07.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate a special kind of almost geodesic mapping of the third type of spaces with non-symmetric affine connection. Also we find some relations for curvature tensors of associated affine connection spaces of almost geodesic mappings of the third type. Finally, we investigate equitorsion almost geodesic mapping having the property of reciprocity and find an invariant geometric object of this mapping. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:695 / 701
页数:7
相关论文
共 50 条
  • [31] COMMUTATION FORMULAE WITH RESPECT TO NON-SYMMETRIC AFFINE CONNECTION
    Simjanovic, Dusan J.
    Vesic, Nenad O.
    QUAESTIONES MATHEMATICAE, 2022, 45 (11) : 1669 - 1682
  • [32] Infinitesimal rigidity and flexibility of a non-symmetric affine connection space
    Velimirovic, Ljubica S.
    Mincic, Svetislav M.
    Stankovic, Mica S.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (04) : 1148 - 1159
  • [33] Second Type Almost Geodesic Mappings of Special Class and Their Invariants
    Vesic, Nenad O.
    Stankovic, Mica S.
    FILOMAT, 2019, 33 (04) : 1201 - 1208
  • [34] INVARIANTS FOR F-PLANAR MAPPINGS OF SYMMETRIC AFFINE CONNECTION SPACES
    Vesic, Nenad O.
    Mihajlovic, Aleksandra
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (02): : 283 - 293
  • [35] Canonical F-Planar Mappings of Spaces with Affine Connection to Two Symmetric Spaces
    Berezovskii, V. E.
    Kuzmina, I. A.
    Mikes, J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (03) : 533 - 538
  • [36] Canonical F-Planar Mappings of Spaces with Affine Connection to Two Symmetric Spaces
    V. E. Berezovskii
    I. A. Kuzmina
    J. Mikeš
    Lobachevskii Journal of Mathematics, 2022, 43 : 533 - 538
  • [37] On Canonical Almost Geodesic Mappings of the First Type of Affinely Connected Spaces
    Berezovskii, V. E.
    Mikes, J.
    RUSSIAN MATHEMATICS, 2014, 58 (02) : 1 - 5
  • [38] Geodesic mappings of equiaffine and anti-equiaffine general affine connection spaces preserving torsion
    Stankovic, Mica S.
    Ciric, Marija S.
    Zlatanovic, Milan Lj.
    FILOMAT, 2012, 26 (03) : 439 - 451
  • [39] On commutativity of the lie derivative and covariant derivative at a non-symmetric affine connection space
    Velimirovic, LS
    Mincic, SM
    Stankovic, MS
    PROCEEDINGS OF THE WORKSHOP ON CONTEMPORARY GEOMETRY AND RELATED TOPICS, 2004, : 425 - 430
  • [40] On One Problem of Connections in the Space of Non-symmetric Affine Connection and its Subspace
    Mincic, Svetislav M.
    FILOMAT, 2019, 33 (04) : 1185 - 1189