Sim-to-Real Transferable Object Classification Through Touch-Based Continuum Manipulation

被引:1
|
作者
Mao, Huitan [1 ]
Santoso, Junius [2 ]
Onal, Cagdas [2 ]
Xiao, Jing [2 ]
机构
[1] UNC Charlotte, Dept Comp Sci, Charlotte, NC 28223 USA
[2] WPI, Robot Engn, Worcester, MA USA
关键词
Continuum manipulation; Tactile sensing; Object perception;
D O I
10.1007/978-3-030-33950-0_25
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
It is important to investigate object perception for classification or recognition based on touch sensing, especially when robots are operating in darkness or the objects are difficult to capture by vision sensors. In this work, we present a new form of continuum manipulator equipped with sparse touch sensing, validate the effectiveness of automatic generation of the touch-based continuum wraps, and the effectiveness of object classification based on the continuum wraps. Using the indirect object shape information encoded in the robot shape, we demonstrate that a classifier trained from the simulated continuum wraps is transferable to identify the real world objects with real continuum wraps.
引用
收藏
页码:280 / 289
页数:10
相关论文
共 50 条
  • [31] Micro-object pose estimation with sim-to-real transfer learning using small dataset
    Zhang, Dandan
    Barbot, Antoine
    Seichepine, Florent
    Lo, Frank P-W
    Bai, Wenjia
    Yang, Guang-Zhong
    Lo, Benny
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [32] Micro-object pose estimation with sim-to-real transfer learning using small dataset
    Dandan Zhang
    Antoine Barbot
    Florent Seichepine
    Frank P.-W. Lo
    Wenjia Bai
    Guang-Zhong Yang
    Benny Lo
    Communications Physics, 5
  • [33] Infra Sim-to-Real : An efficient baseline and dataset for Infrastructure based Online Object Detection and Tracking using Domain Adaptation
    Shyam, Pranjay
    Mishra, Sumit
    Yoon, Kuk-Jin
    Kim, Kyung-Soo
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1393 - 1399
  • [34] Seg-CURL: Segmented Contrastive Unsupervised Reinforcement Learning for Sim-to-Real in Visual Robotic Manipulation
    Xu, Binzhao
    Hassan, Taimur
    Hussain, Irfan
    IEEE ACCESS, 2023, 11 : 50195 - 50204
  • [35] Efficient Sim-to-real Transfer of Contact-Rich Manipulation Skills with Online Admittance Residual Learning
    Zhang, Xiang
    Wang, Changhao
    Sun, Lingfeng
    Wu, Zheng
    Zhu, Xinghao
    Tomizuka, Masayoshi
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [36] Force-Feedback Through Touch-based Interactions With A Nanocopter
    Chen, Yang
    Alimohammadzadeh, Hamed
    Ghandeharizadeh, Shahram
    Culbertson, Heather
    2024 IEEE HAPTICS SYMPOSIUM, HAPTICS 2024, 2024, : 271 - 277
  • [37] Efficient Sim-to-Real Transfer in Reinforcement Learning Through Domain Randomization and Domain Adaptation
    Shakerimov, Aidar
    Alizadeh, Tohid
    Varol, Huseyin Atakan
    IEEE ACCESS, 2023, 11 : 136809 - 136824
  • [38] Force-Feedback Through Touch-based Interactions With A Nanocopter
    Chen, Yang
    Alimohammadzadeh, Hamed
    Ghandeharizadeh, Shahram
    Culbertson, Heather
    2024 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, SSIAI, 2024, : 271 - 277
  • [39] GPDAN: Grasp Pose Domain Adaptation Network for Sim-to-Real 6-DoF Object Grasping
    Zheng, Liming
    Ma, Wenxuan
    Cai, Yinghao
    Lu, Tao
    Wang, Shuo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 4585 - 4592
  • [40] Zero-Shot Sim-to-Real Transfer of Tactile Control Policies for Aggressive Swing-Up Manipulation
    Bi, Thomas
    Sferrazza, Carmelo
    D'Andrea, Raffaello
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 5761 - 5768