Deterministic annealing learning of the radial basis function nets for improving the regression ability of RBF network

被引:0
|
作者
Zheng, NN [1 ]
Zhang, ZH [1 ]
Zheng, HB [1 ]
Gang, S [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R China
关键词
radial basis function net; deterministic annealing; Lagrangian multiplier;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the deterministic annealing method for training the center vectors of RBF network is proposed. The method is a soft-competition scheme and derived from optimizing an objective function using the gradient descent method. To some extent, it can overcome the problems that the learning vector quantization algorithms with the winner-take-all scheme and the heuristic procedure have. The emulation experiment is given to validate the algorithm. The experimental results show that, compared the error back-propagating algorithms of the multi-layer perception and the RBF network, it not only enhances learning precision and generalization ability, but also reduces learning time as well.
引用
收藏
页码:601 / 607
页数:7
相关论文
共 50 条
  • [1] Normalized radial basis function network with hierarchical deterministic annealing for electricity price zone forecasting
    Mori, H.
    Awata, A.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 3256 - +
  • [2] Fuzzy regression with radial basis function network
    Cheng, CB
    Lee, ES
    [J]. FUZZY SETS AND SYSTEMS, 2001, 119 (02) : 291 - 301
  • [3] AN ALGORITHM TO GENERATE RADIAL BASIS FUNCTION (RBF)-LIKE NETS FOR CLASSIFICATION PROBLEMS
    ROY, A
    GOVIL, S
    MIRANDA, R
    [J]. NEURAL NETWORKS, 1995, 8 (02) : 179 - 201
  • [4] Radial basis function (RBF) network for modeling gasoline properties
    Tatar, Afshin
    Barati, Ali
    Najafi, Adel
    Mohammadi, Amir H.
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2019, 37 (11) : 1306 - 1313
  • [5] Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm
    Lu, YW
    Sundararajan, N
    Saratchandran, P
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (02): : 308 - 318
  • [6] Radial basis function (RBF) network adaptive power system stabilizer
    Segal, R
    Kothari, ML
    Madnani, S
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (02) : 722 - 727
  • [7] Radial basis function (RBF) network adaptive power system stabilizer
    Segal, R
    Kothari, ML
    Madnani, S
    [J]. 2000 IEEE POWER ENGINEERING SOCIETY WINTER MEETING - VOLS 1-4, CONFERENCE PROCEEDINGS, 2000, : 1431 - 1431
  • [8] Improving the performance of radial basis function (RBF) classification using information criteria
    Liu, ZQ
    Bozdogan, H
    [J]. STATISTICAL DATA MINING AND KNOWLEDGE DISCOVERY, 2004, : 193 - 216
  • [9] Fuzzy nonlinear regression with fuzzified radial basis function network
    Zhang, D
    Deng, LF
    Cai, KY
    So, A
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (06) : 742 - 760
  • [10] An adaptive learning algorithm aimed at improving RBF network generalization ability
    Sun, J
    Shen, RM
    Yang, F
    [J]. AL 2002: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2002, 2557 : 363 - 373