Explicit solutions of multidimensional pseudo-classical BVP in the half-space

被引:3
|
作者
Maroscia, G
Ricci, PE
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Applica, I-00161 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Hermite-Kampe de Feriet (or Gould-Hopper) polynomials; boundary value problems; operational calculus; pseudo-circular and pseudo-hyperbolic functions;
D O I
10.1016/j.mcm.2003.03.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Generalizations of the canonical problems of hyperbolic or elliptic type are considered. By using an operational approach based on the pseudo-hyperbolic or pseudo-circular functions of the derivative operator, explicit solutions in terms of the Hermite-Kampe de Feriet (or Gould-Hopper) polynomials are derived. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:667 / 689
页数:23
相关论文
共 50 条
  • [21] Pseudo-Differential Operators and Equations in a Discrete Half-Space
    Vasilyev, Alexander V.
    Vasilyev, Vladimir B.
    MATHEMATICAL MODELLING AND ANALYSIS, 2018, 23 (03) : 492 - 506
  • [22] Theoretical study of pseudo SAW in a half-space of piezoelectric crystals
    Zhang, V
    Lefebvre, JE
    Gryba, T
    1999 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 1999, : 177 - 180
  • [23] Frequency domain fundamental solutions for a poroelastic half-space
    Pei Zheng
    Bo-Yang Ding
    She-Xu Zhao
    Acta Mechanica Sinica, 2014, 30 : 206 - 213
  • [24] Conditions for the existence of solutions to a quasilinear inequality in half-space
    Galaktionov, VA
    Egorov, YV
    Kondrat'ev, VA
    Pokhozhaev, SI
    MATHEMATICAL NOTES, 2000, 67 (1-2) : 119 - 121
  • [25] Frequency domain fundamental solutions for a poroelastic half-space
    Zheng, Pei
    Ding, Bo-Yang
    Zhao, She-Xu
    ACTA MECHANICA SINICA, 2014, 30 (02) : 206 - 213
  • [26] Longitudinal Spectral Solutions for the Sommerfeld Half-Space Problem
    Bhattacharyya, Arun K.
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2018, 60 (06) : 72 - 82
  • [27] NONEXISTENCE OF NONNEGATIVE SOLUTIONS FOR PARABOLIC INEQUALITIES IN THE HALF-SPACE
    Galakhov, Evgeny, I
    Salieva, Olga A.
    Uvarova, Liudmila A.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [28] Frequency domain fundamental solutions for a poroelastic half-space
    Pei Zheng
    Bo-Yang Ding
    She-Xu Zhao
    Acta Mechanica Sinica, 2014, 30 (02) : 206 - 213
  • [29] Conditions for the existence of solutions to a quasilinear inequality in half-space
    V. A. Galaktionov
    Yu. V. Egorov
    V. A. Kondrat’ev
    S. I. Pokhozhaev
    Mathematical Notes, 2000, 67 : 119 - 121
  • [30] TRAVELING WAVE SOLUTIONS IN A HALF-SPACE FOR BOUNDARY REACTIONS
    Cabre, Xavier
    Consul, Neus
    Mande, Jose V.
    ANALYSIS & PDE, 2015, 8 (02): : 333 - 364