Classification of chirps using Hidden Markov Models

被引:1
|
作者
Balachandran, Nikhil [1 ]
Creusere, Charles [1 ]
机构
[1] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
关键词
frequency tracking; hidden Markov models; polynomial curve fitting; central moments; Bayesian classifier;
D O I
10.1109/ACSSC.2006.354807
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of classifying chirp signals in noise. Our basic approach combines a Short Time Fourier Transform (STFT) with a Hidden Markov Model (HMM) to track the frequency progression versus time. Next, the best-fit polynomial of the resulting discrete Viterbi path is computed or the central moments are estimated from the distribution of the path. Our experimental results show that separable clusters in the feature space are formed for broad classes of chirps. A Bayesian Classifier can then be applied effectively to classify the different families of chirps. Experiments have been carried out on both synthetically generated chirp signals and naturally occurring lightning discharges as recorded by the FORTE satellite.
引用
收藏
页码:545 / +
页数:2
相关论文
共 50 条
  • [41] Hidden Markov models for gene sequence classification
    Mesa, Andrea
    Basterrech, Sebastian
    Guerberoff, Gustavo
    Alvarez-Valin, Fernando
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (03) : 793 - 805
  • [42] Scanpath modeling and classification with hidden Markov models
    Antoine Coutrot
    Janet H. Hsiao
    Antoni B. Chan
    [J]. Behavior Research Methods, 2018, 50 : 362 - 379
  • [43] Improving Classification Performance of RFID Gates using Hidden Markov Models
    Goller, Michael
    Brandner, Markus
    [J]. 2011 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2011, : 799 - 803
  • [44] Continuous earthquake detection and classification using discrete Hidden Markov Models
    Beyreuther, Moritz
    Wassermann, Joachim
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 175 (03) : 1055 - 1066
  • [45] Multiscale classification using complex wavelets and hidden Markov tree models
    Romberg, J
    Choi, H
    Baraniuk, R
    Kingsbury, N
    [J]. 2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2000, : 371 - 374
  • [46] Application of hidden markov models to problems of classification of radio waves using contrast models
    Baranov, V.A.
    Melnikov, P.V.
    [J]. Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 2013, 72 (11): : 935 - 941
  • [47] Neuron's Spikes Noise Level Classification Using Hidden Markov Models
    Haggag, Sherif
    Mohamed, Shady
    Bhatti, Asim
    Haggag, Hussein
    Nahavandi, Saeid
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 501 - 508
  • [48] Dynamic classification of ballistic missiles using neural networks and hidden Markov models
    Singh, Upendra Kumar
    Padmanabhan, Vineet
    Agarwal, Arun
    [J]. APPLIED SOFT COMPUTING, 2014, 19 : 280 - 289
  • [49] Early Classification of Intent for Maritime Domains Using Multinomial Hidden Markov Models
    Carlson, Logan
    Navalta, Dalton
    Nicolescu, Monica
    Nicolescu, Mircea
    Woodward, Gail
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [50] Classification of HIV-1 Sequences Using Profile Hidden Markov Models
    Dwivedi, Sanjiv K.
    Sengupta, Supratim
    [J]. PLOS ONE, 2012, 7 (05):