EMPIRICAL LIKELIHOOD ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE

被引:0
|
作者
Fang, Fang [1 ]
Hong, Quan [2 ]
Shao, Jun [3 ,4 ]
机构
[1] GE Consumer Finance, Shanghai 201203, Peoples R China
[2] Eli Lilly & Co, Lilly Corp Ctr DC 0734, Indianapolis, IN 46285 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[4] E China Normal Univ, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
Empirical likelihood; nonignorable nonresponse; pseudo likelihood; sample survey; semiparametric likelihood; stratified samples;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonresponse is my common in survey sampling Nonignorable nonresponse, a response mechanism in which the response probability of a survey variable Y depends directly oil the value of Y regardless of whether Y is observed or not, is the most difficult, type of nonresponse to handle The population mean estimators ignoring the nonrespondents typically have heavy biases. Ills paper studies all empirical likelihood-based estimation method, with samples under nonignorable nonresponse, when all observed auxiliary categorical variable Z is available The likelihood is semiparametric we assume a parametric model oil the response mechanism and the conditional probability of Y given Y, and a nonparametric model on the distribution of Y When the number of Z categories is not small a pseudo empirical likelihood method is applied to reduce the computational intensity Asymptotic distributions of the proposed population mean estimators are derived For variance estimation; we consider a bootstrap procedure and its consistency is established Some simulation results are provided to assess the finite sample performance of the proposed estimators
引用
收藏
页码:263 / 280
页数:18
相关论文
共 50 条
  • [21] Using Auxiliary Data for Binomial Parameter Estimation with Nonignorable Nonresponse
    Wang, Xueli
    Chen, Hua
    Geng, Zhi
    Zhou, Xiaohua
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (19) : 3468 - 3478
  • [22] Semiparametric maximum likelihood inference by using failed contact attempts to adjust for nonignorable nonresponse
    Qin, Jing
    Follmann, Dean A.
    [J]. BIOMETRIKA, 2014, 101 (04) : 985 - 991
  • [23] Model selection with nonignorable nonresponse
    Fang, Fang
    Shao, Jun
    [J]. BIOMETRIKA, 2016, 103 (04) : 861 - 874
  • [24] Optimal pseudolikelihood estimation in the analysis of multivariate missing data with nonignorable nonresponse
    Zhao, Jiwei
    Ma, Yanyuan
    [J]. BIOMETRIKA, 2018, 105 (02) : 479 - 486
  • [25] Likelihood identifiability and parameter estimation with nonignorable missing data
    Zheng, Siming
    Zhang, Juan
    Zhou, Yong
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (04): : 1190 - 1209
  • [26] Empirical likelihood inference in linear regression with nonignorable missing response
    Niu, Cuizhen
    Guo, Xu
    Xu, Wangli
    Zhu, Lixing
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 79 : 91 - 112
  • [27] Empirical likelihood for nonlinear regression models with nonignorable missing responses
    Yang, Zhihuang
    Tang, Niansheng
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (03): : 386 - 416
  • [28] Imputation and Estimation under Nonignorable Nonresponse in Household Surveys with Missing Covariate Information
    Pfeffermann, Danny
    Sikov, Anna
    [J]. JOURNAL OF OFFICIAL STATISTICS, 2011, 27 (02) : 181 - 209
  • [29] Semiparametric estimation in generalized additive partial linear models with nonignorable nonresponse data
    Du, Jierui
    Cui, Xia
    [J]. STATISTICAL PAPERS, 2024, 65 (05) : 3235 - 3259
  • [30] Empirical likelihood and Wilks phenomenon for data with nonignorable missing values
    Zhao, Puying
    Wang, Lei
    Shao, Jun
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (04) : 1003 - 1024