In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries

被引:71
|
作者
Jing, Yan [1 ]
Zhao, Evan Wenbo [2 ,5 ]
Goulet, Marc-Antoni [3 ,6 ]
Bahari, Meisam [3 ]
Fell, Eric M. [3 ]
Jin, Shijian [3 ]
Davoodi, Ali [3 ,4 ,7 ]
Jonsson, Erlendur [2 ]
Wu, Min [3 ]
Grey, Clare P. [2 ]
Gordon, Roy G. [1 ,3 ]
Aziz, Michael J. [3 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge, England
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Ferdowsi Univ Mashhad FUM, Mat & Met Engn Dept, Fac Engn, Mashhad, Razavi Khorasan, Iran
[5] Radboud Univ Nijmegen, Inst Mol & Mat, Magnet Resonance Res Ctr, Nijmegen, Netherlands
[6] Concordia Univ, Dept Chem & Mat Engn, Montreal, PQ, Canada
[7] Sichuan Univ, Sichuan Univ Pittsburgh Inst, Chengdu, Peoples R China
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
TAUTOMERISM; LIFETIME;
D O I
10.1038/s41557-022-00967-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous organic redox flow batteries offer a safe and potentially inexpensive solution to the problem of storing massive amounts of electricity produced from intermittent renewables. However, molecular decomposition represents a major barrier to commercialization-and although structural modifications can improve stability, it comes at the expense of synthetic cost and molecular weight. Now, utilizing 2,6-dihydroxy-anthraquinone (DHAQ) without further structural modification, we demonstrate that the regeneration of the original molecule after decomposition represents a viable route to achieve low-cost, long-lifetime aqueous organic redox flow batteries. We used in situ (online) NMR and electron paramagnetic resonance, and complementary electrochemical analyses to show that the decomposition compound 2,6-dihydroxy-anthrone (DHA) and its tautomer, 2,6-dihydroxy-anthranol (DHAL) can be recomposed to DHAQ electrochemically through two steps: oxidation of DHA(L)(2-) to the dimer (DHA)(2)(4-) by one-electron transfer followed by oxidation of (DHA)(2)(4-) to DHAQ(2-) by three-electron transfer per DHAQ molecule. This electrochemical regeneration process also rejuvenates the positive electrolyte-rebalancing the states of charge of both electrolytes without introducing extra ions.
引用
收藏
页码:1103 / +
页数:13
相关论文
共 50 条
  • [31] Redox-active macromolecular structures for energy storage in non-aqueous redox-flow batteries
    Gavvalapalli, Nagarjuna
    Montoto, Elena
    Hui, Jingshu
    Burgess, Mark
    Hernandez-Burgos, Kenneth
    Sekerak, Nina
    Cheng, Kevin
    Chenard, Etienne
    Moores, Jeffrey
    Lopez, Joaquin Rodriguez
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [32] Redox active viologen derivatives for aqueous and non-aqueous organic redox flow batteries applications
    Cho, Yunho
    Kye, Hyojin
    Kim, Bong-Gi
    Kwon, Ji Eon
    [J]. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 136 : 73 - 88
  • [33] Hydrophilic Organic Redox-Active Polymer Nanoparticles for Higher Energy Density Flow Batteries
    Hatakeyama-Sato, Kan
    Nagano, Takashi
    Noguchi, Shiori
    Sugai, Yota
    Du, Jie
    Nishide, Hiroyuki
    Oyaizu, Kenichi
    [J]. ACS APPLIED POLYMER MATERIALS, 2019, 1 (02): : 188 - +
  • [34] Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility
    Wedege, Kristina
    Drazevic, Emil
    Konya, Denes
    Bentien, Anders
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [35] Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility
    Kristina Wedege
    Emil Dražević
    Denes Konya
    Anders Bentien
    [J]. Scientific Reports, 6
  • [36] Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries
    Nam, Kwan Woo
    Kim, Heejin
    Beldjoudi, Yassine
    Kwon, Tae-woo
    Kim, Dong Jun
    Stoddart, J. Fraser
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (05) : 2541 - 2548
  • [37] Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries
    Nam, Kwan Woo
    Kim, Heejin
    Beldjoudi, Yassine
    Kwon, Tae-Woo
    Kim, Dong Jun
    Stoddart, J. Fraser
    [J]. Journal of the American Chemical Society, 2020, 142 (05): : 2541 - 2548
  • [38] Review on Redox-Active Organic Compounds for All-Organic Batteries
    Yu, Zehao
    Wang, Yinxu
    Luo, Zhiqiang
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (22) : 9619 - 9630
  • [39] TEMPO/Phenazine Combi-Molecule: A Redox-Active Material for Symmetric Aqueous Redox-Flow Batteries
    Winsberg, Jan
    Stolze, Christian
    Muench, Simon
    Liedl, Ferenc
    Hager, Martin D.
    Schubert, Ulrich S.
    [J]. ACS ENERGY LETTERS, 2016, 1 (05): : 976 - 980
  • [40] Ageing mechanisms in electrochemical capacitors with aqueous redox-active electrolytes
    Platek, Anetta
    Piwek, Justyna
    Fic, Krzysztof
    Frackowiak, Elzbieta
    [J]. ELECTROCHIMICA ACTA, 2019, 311 : 211 - 220