Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers

被引:98
|
作者
Fu, Yu [1 ,2 ]
Wu, Pei-Hsuan [3 ,4 ]
Beane, Timothy [3 ,4 ]
Zamore, Phillip D. [3 ,4 ]
Weng, Zhiping [2 ,5 ]
机构
[1] Boston Univ, Bioinformat Program, 44 Cummington Mall, Boston, MA 02215 USA
[2] Univ Massachusetts, Med Sch, Program Bioinformat & Integrat Biol, 368 Plantat St, Worcester, MA 01605 USA
[3] Univ Massachusetts, RNA Therapeut Inst, Med Sch, 368 Plantat St, Worcester, MA 01605 USA
[4] Univ Massachusetts, Howard Hughes Med Inst, Med Sch, 368 Plantat St, Worcester, MA 01605 USA
[5] Univ Massachusetts, Dept Biochem & Mol Pharmacol, Med Sch, 368 Plantat St, Worcester, MA 01605 USA
来源
BMC GENOMICS | 2018年 / 19卷
基金
美国国家卫生研究院;
关键词
RNA-seq; Small RNA-seq; Unique molecular identifier; UMI; PCR duplicates; PCR cycle; Starting material; Sequencing depth; Transcriptome; Ribognome; PIRNA CLUSTERS; DNA-MOLECULES; CHIP-SEQ; LIBRARIES; FIDELITY; COMPLEX; TRANSCRIPTION; CHALLENGES; ARTIFACTS; REVEALS;
D O I
10.1186/s12864-018-4933-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: RNA-seq and small RNA-seq are powerful, quantitative tools to study gene regulation and function. Common high-throughput sequencing methods rely on polymerase chain reaction (PCR) to expand the starting material, but not every molecule amplifies equally, causing some to be overrepresented. Unique molecular identifiers (UMIs) can be used to distinguish undesirable PCR duplicates derived from a single molecule and identical but biologically meaningful reads from different molecules. Results: We have incorporated UMIs into RNA-seq and small RNA-seq protocols and developed tools to analyze the resulting data. Our UMIs contain stretches of random nucleotides whose lengths sufficiently capture diverse molecule species in both RNA-seq and small RNA-seq libraries generated from mouse testis. Our approach yields high-quality data while allowing unique tagging of all molecules in high-depth libraries. Conclusions: Using simulated and real datasets, we demonstrate that our methods increase the reproducibility of RNA-seq and small RNA-seq data. Notably, we find that the amount of starting material and sequencing depth, but not the number of PCR cycles, determine PCR duplicate frequency. Finally, we show that computational removal of PCR duplicates based only on their mapping coordinates introduces substantial bias into data analysis.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] RNA-Seq unleashed
    Matthew K Iyer
    Arul M Chinnaiyan
    Nature Biotechnology, 2011, 29 : 599 - 600
  • [12] In situ RNA-seq
    Hannah Stower
    Nature Reviews Genetics, 2013, 14 (9) : 596 - 596
  • [13] THE TRUE RNA-SEQ
    Rusk, Nicole
    NATURE METHODS, 2009, 6 (11) : 790 - 791
  • [14] MicroRNAs Involved in Regulatory Cytoplasmic Male Sterility by Analysis RNA-seq and Small RNA-seq in Soybean
    Zhang, Chunbao
    Fu, Fuyou
    Lin, Chunjing
    Ding, Xiaoyang
    Zhang, Jingyong
    Yan, Hao
    Wang, Pengnian
    Zhang, Wei
    Peng, Bao
    Zhao, Limei
    FRONTIERS IN GENETICS, 2021, 12
  • [15] Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
    F. William Townes
    Rafael A. Irizarry
    Genome Biology, 21
  • [16] BUTTERFLY: addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq
    Johan Gustafsson
    Jonathan Robinson
    Jens Nielsen
    Lior Pachter
    Genome Biology, 22
  • [17] BUTTERFLY: addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq
    Gustafsson, Johan
    Robinson, Jonathan
    Nielsen, Jens
    Pachter, Lior
    GENOME BIOLOGY, 2021, 22 (01)
  • [18] Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
    Townes, F. William
    Irizarry, Rafael A.
    GENOME BIOLOGY, 2020, 21 (01)
  • [19] Functional evaluation of LTR-derived lncRNAs in porcine oocytes and zygotes with RNA-seq and small RNA-seq
    Yang, Xu
    Ji, Jingzhang
    Cui, Hongdi
    Zhao, Qi
    Ding, Chunming
    Xu, Chang
    FRONTIERS IN GENETICS, 2022, 13
  • [20] Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM)
    Grant, Gregory R.
    Farkas, Michael H.
    Pizarro, Angel D.
    Lahens, Nicholas F.
    Schug, Jonathan
    Brunk, Brian P.
    Stoeckert, Christian J.
    Hogenesch, John B.
    Pierce, Eric A.
    BIOINFORMATICS, 2011, 27 (18) : 2518 - 2528