On deterministic finite automata and syntactic monoid size

被引:30
|
作者
Holzer, M
König, B
机构
[1] Tech Univ Munich, Inst Informat, D-85748 Garching, Germany
[2] Univ Stuttgart, Inst Formale Methoden Informat, D-70569 Stuttgart, Germany
关键词
automata theory; deterministic finite automata; syntactic monoids;
D O I
10.1016/j.tcs.2004.04.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the relationship between regular languages and syntactic monoid size. In particular, we consider the transformation monoids of n-state (minimal) deterministic finite automata. We show tight upper and lower bounds on the syntactic monoid size depending on the number of generators (input alphabet size) used. It turns out, that the two generator case is the most involved one. There we show a lower bound of n(n) (1 - 2/rootn) for the size of the syntactic monoid of a language accepted by an n-state deterministic finite automaton with binary input alphabet. Moreover, we prove that for every prime n greater than or equal to 7, the maximal size semigroup w.r.t. its size among all (transformation) semigroups which can be generated with two generators, is generated by a permutation with two cycles (of appropriate lengths) and a non-bijective mapping merging elements from these two cycles. As a by-product of our investigations we determine the maximal size among all semigroups generated by two transformations, where one is a permutation with a single cycle and the other is a non-bijective mapping. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:319 / 347
页数:29
相关论文
共 50 条
  • [1] On deterministic finite automata and syntactic monoid size
    Holzer, M
    König, B
    [J]. DEVELOPMENTS IN LANGUAGE THEORY, 2003, 2450 : 258 - 269
  • [2] On deterministic finite automata and syntactic monoid size, continued
    Holzer, M
    König, B
    [J]. DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2003, 2710 : 349 - 360
  • [3] Size of quantum versus deterministic finite automata
    Ambainis, A
    Barbans, U
    Belousova, A
    Belovs, A
    Dzelme, I
    Folkmanis, G
    Freivalds, R
    Ledins, P
    Opmanis, R
    Skuskovniks, A
    [J]. VLSI'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON VLSI, 2003, : 303 - 308
  • [4] Word problems recognisable by deterministic blind monoid automata
    Kambites, Mark
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 362 (1-3) : 232 - 237
  • [5] Failure Deterministic Finite Automata
    Kourie, Derrick G.
    Watson, Bruce W.
    Cleophas, Loek
    Venter, Fritz
    [J]. PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2012, 2012, : 28 - 41
  • [6] Deterministic adaptive finite automata
    De Castro Jr., A.A.
    Neto, J.J.
    Pistori, H.
    [J]. IEEE Latin America Transactions, 2007, 5 (07) : 515 - 521
  • [7] LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA
    RON, D
    RUBINFELD, R
    [J]. MACHINE LEARNING, 1995, 18 (2-3) : 149 - 185
  • [8] Minimal Reversible Deterministic Finite Automata
    Holzer, Markus
    Jakobi, Sebastian
    Kutrib, Martin
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (02) : 251 - 270
  • [9] The Degree of Irreversibility in Deterministic Finite Automata
    Axelsen, Holger Bock
    Holzer, Markus
    Kutrib, Martin
    [J]. Implementation and Application of Automata, 2016, 9705 : 15 - 26
  • [10] On Parallel Implementations of Deterministic Finite Automata
    Holub, Jan
    Stekr, Stanislav
    [J]. IMPLEMENTATION AND APPLICATION OF AUTOMATA, PROCEEDINGS, 2009, 5642 : 54 - 64