A parallel similarity search in high dimensional metric space using M-tree

被引:0
|
作者
Alpkocak, A [1 ]
Danisman, T [1 ]
Ulker, T [1 ]
机构
[1] Dokuz Eylul Univ, Dept Comp Engn, TR-35100 Izmir, Turkey
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, parallel implementation of M-tree to index high dimensional metric space has been elaborated and an optimal declustering technique has been proposed. First, we have defined the optimal declustering and developed an algorithm based on this definition. Proposed declustering algorithm considers both object proximity and data load on disk/processors by executing a k-NN or a range query for each newly inserted objects. We have tested our algorithm in a database containing randomly chosen 1000 image's color histograms with 32 bins in HSV color space. Experimentation showed that our algorithm produces a very near optimal declustering.
引用
收藏
页码:166 / 171
页数:6
相关论文
共 50 条
  • [41] A Parallel Algorithm for Game Tree Search Using GPGPU
    Li, Liang
    Liu, Hong
    Wang, Hao
    Liu, Taoying
    Li, Wei
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (08) : 2114 - 2127
  • [42] Feature Selection for High Dimensional Data Using Monte Carlo Tree Search
    Chaudhry, Muhammad Umar
    Lee, Jee-Hyong
    IEEE ACCESS, 2018, 6 : 76036 - 76048
  • [43] A parallel computational approach for similarity search using Bloom filters
    Chauhan, Sachendra Singh
    Batra, Shalini
    COMPUTATIONAL INTELLIGENCE, 2018, 34 (02) : 713 - 733
  • [44] An efficient high-dimensional index structure using cell signatures for similarity search
    Chang, JW
    Song, KT
    ADVANCES IN WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2001, 2118 : 26 - 33
  • [45] High-dimensional image descriptor matching using highly parallel KD-tree construction and approximate nearest neighbor search
    Hu, Linjia
    Nooshabadi, Saeid
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 132 : 127 - 140
  • [46] Massively Parallel Tree Embeddings for High Dimensional Spaces
    Ahanchi, Amirmohsen
    Andoni, Alexandr
    Hajiaghayi, MohammadTaghi
    Knittel, Marina
    Zhong, Peilin
    PROCEEDINGS OF THE 35TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, SPAA 2023, 2023, : 77 - 88
  • [47] Searching and updating metric space databases using the parallel EGNAT
    Marin, Mauricio
    Uribe, Roberto
    Barrientos, Ricardo
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 229 - +
  • [48] High-Dimensional Similarity Search for Scalable Data Science
    Echihabi, Karima
    Zoumpatianos, Kostas
    Palpanas, Themis
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 2369 - 2372
  • [49] Clustering for approximate similarity search in high-dimensional spaces
    Li, C
    Chang, E
    Garcia-Molina, H
    Wiederhold, G
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2002, 14 (04) : 792 - 808
  • [50] Memory Vectors for Similarity Search in High-Dimensional Spaces
    Iscen, Ahmet
    Furon, Teddy
    Gripon, Vincent
    Rabbat, Michael
    Jegou, Herve
    IEEE TRANSACTIONS ON BIG DATA, 2018, 4 (01) : 65 - 77