Highly conductive and flexible bilayered MXene/cellulose paper sheet for efficient electromagnetic interference shielding applications

被引:78
|
作者
Zhu, Meng [1 ]
Yan, Xuanxuan [1 ]
Xu, Hailong [2 ]
Xu, Yongjian [1 ]
Kong, Luo [3 ]
机构
[1] Shaanxi Univ Sci & Technol, Natl Demonstrat Ctr Expt Light Chem Engn Educ, Shaanxi Prov Key Lab Papermaking Technol & Specia, Key Lab Paper Based Funct Mat,China Natl Light In, Xian 710021, Peoples R China
[2] Hong Kong Polytech Univ, Inst Text & Clothing, Hong Kong, Peoples R China
[3] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Shaanxi, Peoples R China
关键词
MXene; cellulose paper sheets; Layered structures; Electrical properties; Mechanical properties; EMI shielding performance; MICROWAVE-ABSORPTION; GRAPHENE PAPERS; FILM; NANOCOMPOSITES; COMPOSITE; ULTRATHIN; FABRICATION; AEROGELS; SURFACE; MXENES;
D O I
10.1016/j.ceramint.2021.03.034
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, a robust and flexible bilayered MXene/cellulose paper sheet with superhigh electrical conductivity was prepared via vacuum-assisted filtration and a subsequent hot-pressing process for electromagnetic interference (EMI) shielding applications. By tightly assembling few-layered MXene (f-Ti3C2Tx) on the cellulose substrate via hydrogen bonds, an effective and interconnected conductive network was constructed in the paper sheet, resulting in a high electrical conductivity of 774.6-5935.4 S m-1 at various f-Ti3C2Tx loadings. The highly conductive MXene layer can promptly reflect a great amount of incident EM waves, a process which preceded the transmission of EM waves in the cellulose matrix. Owing to the highly efficient reflection-dominated EMI shielding mechanism, the resultant bilayered MXene/cellulose paper sheets exhibit excellent EMI shielding effectiveness of 34.9-60.1 dB and specific EMI shielding efficiency of 290.6-600.7 dB mm-1. Moreover, the MXene/cellulose paper sheets demonstrated improved mechanical strength (up to 25.7 MPa) and flexibility due to the mechanical frame effect acted by the cellulose substrate. Consequently, the robust and flexible bilayered MXene/cellulose paper sheet is a promising candidate for application in next-generation electric devices.
引用
收藏
页码:17234 / 17244
页数:11
相关论文
共 50 条
  • [21] Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers
    Zhou, Bing
    Zhang, Zhen
    Li, Yanli
    Han, Gaojie
    Feng, Yuezhan
    Wang, Bo
    Zhang, Dianbo
    Ma, Jianmin
    Liu, Chuntai
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (04) : 4895 - 4905
  • [22] Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding
    Zhan, Zeying
    Song, Quancheng
    Zhou, Zehang
    Lu, Canhui
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (32) : 9820 - 9829
  • [23] Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding
    Liu, Zhangshuo
    Zhang, Yu
    Zhang, Hao-Bin
    Dai, Yang
    Liu, Ji
    Li, Xiaofeng
    Yu, Zhong-Zhen
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (05) : 1673 - 1678
  • [24] Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances
    Chen, Mengting
    Zhang, Ling
    Duan, Shasha
    Jing, Shilong
    Jiang, Hao
    Luo, Meifang
    Li, Chunzhong
    NANOSCALE, 2014, 6 (07) : 3796 - 3803
  • [25] Lightweight, flexible, and highly conductive recycled carbon fiber felt for electromagnetic interference shielding
    Hu, Qiaole
    Duan, Yufang
    Zheng, Xianhong
    Nie, Wenqi
    Zou, Lihua
    Xu, Zhenzhen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 935
  • [26] Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding
    Ma, Meng
    Tao, Wenting
    Liao, Xianjun
    Chen, Si
    Shi, Yanqin
    He, Huiwen
    Wang, Xu
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [27] Flexible, conductive and multifunctional cotton fabric with surface wrinkled MXene/CNTs microstructure for electromagnetic interference shielding
    Xie, Chenlu
    Wang, Yu
    Wang, Wei
    Yu, Dan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 651
  • [28] Silver nanowires/cellulose flexible transparent conductive films for electromagnetic interference shielding and electrothermal conversion
    Guo, Zhijiang
    Li, Xiaoli
    Li, Ning
    Liu, Xuanji
    Hao, Longhui
    Wang, Yuxuan
    Deng, Wei
    Bai, Haoxuan
    Liang, Jianguo
    Chen, Zhanchun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (05) : 4524 - 4532
  • [29] Mechanically strong, thermally conductive and flexible graphene composite paper for exceptional electromagnetic interference shielding
    Li, Jianjun
    Huang, Li
    Yuan, Ye
    Li, Yibin
    He, Xiaodong
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 263
  • [30] Ultrastrong and Highly Conductive MXene-Based Films for High-Performance Electromagnetic Interference Shielding
    Liu, Ji
    Liu, Zhangshuo
    Zhang, Hao-Bin
    Chen, Wei
    Zhao, Zhenfang
    Wang, Qi-Wei
    Yu, Zhong-Zhen
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (01):