Neutron yield and Lawson criterion for plasma with inertial electrostatic confinement

被引:8
|
作者
Gus'kov, S. Yu [1 ,2 ]
Kurilenkov, Yu K. [1 ]
机构
[1] Russian Acad Sci, Joint Inst High Temp, Izhorskaya 13,Bldg 2, Moscow 125412, Russia
[2] Russian Acad Sci, Lebedev Phys Inst, Leninsky Ave 53, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
INTERELECTRODE PLASMA; NUCLEAR-FUSION;
D O I
10.1088/1742-6596/774/1/012132
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The physics of plasma formation is discussed in the systems with inertial electrostatic confinement (IEC) during the convergent to the axis of cylindrical geometry of the ion flow accelerated periodically in the field of virtual cathode, which is formed by the injected electrons. The ranges of plasma parameters and the resulting neutron yield are determined for different modes of ion flux formation. The requirements are formulated to the technical parameters of the system with IEC to create both a powerful neutron source with a rate of generation exceeding 10(10)-10(12) particles/s and to achieve a positive energy output (analogue of Lawson criterion).
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Anode shape dependency of discharge characteristics and neutron yield of a linear type inertial electrostatic confinement fusion neutron source
    Itagaki, Tomonobu
    Hotta, Eiki
    Hasegawa, Jun
    Takakura, Kei
    Tabata, Shinnosuke
    Matsueda, Yasushi
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2021, 104 (01) : 26 - 36
  • [12] Neutron Radiography Using Inertial Electrostatic Confinement (IEC) Fusion
    Takakura, Kei
    Sako, Takayuki
    Miyadera, Haruo
    Yoshioka, Kenichi
    Karino, Yoshiji
    Nakayama, Kohichi
    Sugita, Tsukasa
    Uematsu, Daisuke
    Okutomo, Kohei
    Hasegawa, Jun
    Kohno, Toshiyuki
    Hotta, Eiki
    [J]. PLASMA AND FUSION RESEARCH, 2018, 13
  • [13] Study on an inertial electrostatic confinement fusion as a portable neutron source
    Ohnishi, M
    Yamamoto, Y
    Hasegawa, N
    Yoshikawa, K
    Miley, GH
    [J]. FUSION ENGINEERING AND DESIGN, 1998, 42 : 207 - 211
  • [14] Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion
    Sztejnberg Goncalves-Carralves, M. L.
    Miller, M. E.
    [J]. APPLIED RADIATION AND ISOTOPES, 2015, 106 : 95 - 100
  • [15] A study on neutron emission from a cylindrical inertial electrostatic confinement device
    Buzarbaruah, N.
    Mohanty, S. R.
    Hotta, E.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 911 : 66 - 73
  • [16] Cylindrical inertial electrostatic confinement plasma source for surface treatment
    Tiedemann, Dominik
    Hofmann, Patrick
    Emmerlich, Jens
    Chan, Yung-An
    Ulrich, Sven
    Herdrich, Georg
    Mueller, Matthias
    [J]. VACUUM, 2021, 193
  • [17] Composition of the source region plasma in inertial electrostatic confinement devices
    Boris, D. R.
    Emmert, G. A.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (08)
  • [18] Pulse operation mode of inertial electrostatic plasma confinement devices
    Prokuratov, I. A.
    Mikhailov, Yu. V.
    Andreev, D. A.
    Golikov, A. V.
    Lemeshko, B. D.
    Maslennikov, S. P.
    [J]. ANNALS OF NUCLEAR ENERGY, 2024, 203
  • [19] POTENTIAL WELL STRUCTURE IN AN INERTIAL ELECTROSTATIC PLASMA CONFINEMENT DEVICE
    SWANSON, DA
    CHERRINGTON, BE
    VERDEYEN, JT
    [J]. PHYSICS OF FLUIDS, 1973, 16 (11) : 1939 - 1945
  • [20] Pulse operation mode of inertial electrostatic plasma confinement devices
    Prokuratov, I. A.
    Mikhailov, Yu. V.
    Andreev, D. A.
    Golikov, A. V.
    Lemeshko, B. D.
    Maslennikov, S. P.
    [J]. ANNALS OF NUCLEAR ENERGY, 2024, 203