The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants

被引:126
|
作者
Cakmakci, Ramazan [1 ]
Erat, Mustafa
Erdogan, Ummugulsum
Donmez, Mesude Figen
机构
[1] Ataturk Univ, Biotechnol Applicat & Res Ctr, TR-24240 Erzurum, Turkey
[2] Ataturk Univ, Tech Vocat Sch Ispir, TR-25900 Erzurum, Turkey
[3] Ataturk Univ, Fac Agr, Dept Plant Protect, TR-24240 Erzurum, Turkey
关键词
plant growth-promoting bacteria (PGPR); nitrogen fixation; enzyme activity; wheat; spinach; Bacillus ssp; Paenibacillus; Pseudomonas;
D O I
10.1002/jpln.200625105
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
A pot experiment in a greenhouse was conducted in order to investigate the effect of different N-2-fixing, phytohormone-producing, and P-solubilizing bacterial species on wheat and spinach growth and enzyme activities. Growth parameters and the activities of four enzymes, glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49), 6-phosphogluconate dehydrogenase (6PGD; EC 1.1.1.44), glutathione reductase (GR; EC 1.8.1.7), and glutathione S-transferase (GST, EC 2.5.1.18) were determined in the leaves of wheat (Triticum aestivum L., Konya) and spinach (Spinacia oleracea L.), noninoculated and inoculated with nine plant growth-promoting rhizobacteria (PGPR: Bacillus cereus RC18, Bacillus licheniformis RC08, Bacillus megaterium RC07, Bacillus subtilis RC11, Bacillus OSU-142, Bacillus M-13, Pseudomonas putida RC06, Paenibacillus polymyxa RC05 and RC14). Among the strains used in the present study, six PGPR exhibited nitrogenase activity and four were efficient in phosphate solubilization; all bacterial strains were efficient in indole acetic acid (IAA) production and significantly increased growth of wheat and spinach. Inoculation with PGPR increased wheat shoot fresh weight by 16.2%-53.8% and spinach shoot fresh weight by 2.2%-53.4% over control. PGPR inoculation gave leaf area increases by 6.0%-47.0% in wheat and 5.3%-49.3% in spinach. Inoculation increased plant height by 2.2%-24.6% and 1.9%-36.8% in wheat and spinach, respectively. A close relationship between plant growth and enzyme activities such as G6PD, 6PGD, GR, and GST was demonstrated. Plant-growth response was variable and dependent on the inoculant strain, enzyme activity, plant species, and growth parameter evaluated. In particular, the N-2-fixing bacterial strains RC05, RC06, RC14, and OSU-142 and the P-solubilizing strains RC07 and RC08 have great potential in being formulated and used as biofertilizers.
引用
收藏
页码:288 / 295
页数:8
相关论文
共 50 条
  • [41] Plant growth-promoting rhizobacteria promote plant size inequality
    Alan C. Gange
    Kiran R. Gadhave
    Scientific Reports, 8
  • [42] Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis
    Tsukanova, K. A.
    Chebotar, V. K.
    Meyer, J. J. M.
    Bibikova, T. N.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2017, 113 : 91 - 102
  • [43] Stress mitigation strategies of plant growth-promoting rhizo-bacteria: Plant growth-promoting rhizobacteria mechanisms
    Sharma, Vriti
    Singh, Aakriti
    Sharma, Diksha
    Sharma, Aashima
    Phogat, Sarika
    Chakraborty, Navjyoti
    Chatterjee, Sayan
    Purty, Ram Singh
    PLANT SCIENCE TODAY, 2021, 8 : 25 - 32
  • [44] Applications of free living plant growth-promoting rhizobacteria
    Lucy, M
    Reed, E
    Glick, BR
    ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2004, 86 (01): : 1 - 25
  • [45] Root colonization by inoculated plant growth-promoting rhizobacteria
    Benizri, E
    Baudoin, E
    Guckert, A
    BIOCONTROL SCIENCE AND TECHNOLOGY, 2001, 11 (05) : 557 - 574
  • [46] Characterization of the Bioactive Metabolites from a Plant Growth-Promoting Rhizobacteria and Their Exploitation as Antimicrobial and Plant Growth-Promoting Agents
    Emrin George
    S. Nishanth Kumar
    Jubi Jacob
    Bhaskara Bommasani
    Ravi S. Lankalapalli
    P. Morang
    B. S. Dileep Kumar
    Applied Biochemistry and Biotechnology, 2015, 176 : 529 - 546
  • [47] Plant growth-promoting rhizobacteria used in South Korea
    Ibal, Jerald Conrad
    Jung, Byung Kwon
    Park, Chang Eon
    Shin, Jae-Ho
    APPLIED BIOLOGICAL CHEMISTRY, 2018, 61 (06) : 709 - 716
  • [48] Plant growth-promoting rhizobacteria used in South Korea
    Jerald Conrad Ibal
    Byung Kwon Jung
    Chang Eon Park
    Jae-Ho Shin
    Applied Biological Chemistry, 2018, 61 : 709 - 716
  • [49] Plant growth-promoting rhizobacteria and root system functioning
    Vacheron, Jordan
    Desbrosses, Guilhem
    Bouffaud, Marie-Lara
    Touraine, Bruno
    Moenne-Loccoz, Yvan
    Muller, Daniel
    Legendre, Laurent
    Wisniewski-Dye, Florence
    Prigent-Combaret, Claire
    FRONTIERS IN PLANT SCIENCE, 2013, 4
  • [50] Endophytic colonization of spruce by plant growth-promoting rhizobacteria
    Shishido, M
    Breuil, C
    Chanway, CP
    FEMS MICROBIOLOGY ECOLOGY, 1999, 29 (02) : 191 - 196