DUAL KAPPA POINCARE ALGEBRA

被引:4
|
作者
Magpantay, Jose A. [1 ,2 ]
机构
[1] Univ Philippines, Natl Inst Phys, Quezon City 1101, Philippines
[2] Univ Philippines, Technol Management Ctr, Quezon City 1101, Philippines
来源
关键词
Lorentz; Poincare and phase space algebras; DSR; kappa Poincare algebra; DOUBLY SPECIAL RELATIVITY; SPACE;
D O I
10.1142/S0217751X1004807X
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We show a different modification of Poincare algebra that also preserves Lorentz algebra. The change begins with how boosts affect space-time in a way similar to how they affect the momenta in kappa Poincare algebra; hence the term "dual kappa Poincare algebra." Since by construction the new space-time commutes, it follows that the momenta co-commute. Proposing a space-time coalgebra that is similar to the momentum coproduct in the bicrossproduct basis of kappa Poincare algebra, we derive the phase space algebra using the Heisenberg double construction. The phase space variables of the dual kappa Poincare algebra are then related to SR phase space variables. From these relations, we complete the dual kappa Poincare algebra by deriving the action of rotations and boosts on the momenta.
引用
收藏
页码:1881 / 1890
页数:10
相关论文
共 50 条
  • [21] REDUCTION OF THE REPRESENTATION OF THE GENERALIZED POINCARE ALGEBRA BY THE GALILEI ALGEBRA
    FUSHCHICH, VI
    NIKITIN, AG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (07): : 2319 - 2330
  • [22] Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincare algebras and their dual extensions
    Meljanac, Stjepan
    Martinic-Bilac, Tea
    Kresic-Juric, Sasa
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (05)
  • [23] kappa-Poincare quantum group
    Ruegg, H
    QUANTUM GROUPS AND THEIR APPLICATIONS IN PHYSICS, 1996, 127 : 489 - 506
  • [24] EXTENSIONS OF POINCARE ALGEBRA BY SPINOR GENERATORS
    KONOPELCHENKO, BG
    JETP LETTERS, 1975, 21 (10) : 287 - 288
  • [25] NEW SUPERSYMMETRIC EXTENSION OF POINCARE ALGEBRA
    KHAN, I
    LETTERS IN MATHEMATICAL PHYSICS, 1985, 9 (04) : 265 - 270
  • [26] Q-DEFORMATION OF POINCARE ALGEBRA
    LUKIERSKI, J
    RUEGG, H
    NOWICKI, A
    TOLSTOY, VN
    PHYSICS LETTERS B, 1991, 264 (3-4) : 331 - 338
  • [27] Homology of Lie algebra of supersymmetries and of super Poincare Lie algebra
    Movshev, M. V.
    Schwarz, A.
    Xu, Renjun
    NUCLEAR PHYSICS B, 2012, 854 (02) : 483 - 503
  • [28] THE POINCARE MAP IN MIXED EXTERIOR ALGEBRA
    VANSTONE, JR
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (02): : 129 - 136
  • [29] Generalized Dirac oscillator with κ-Poincare algebra
    Wu, Jing
    Long, Chao-Yun
    Wu, Zheng-Xue
    Long, Zheng-Wen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2020, 29 (05):
  • [30] The stabilized Poincare-Heisenberg algebra: A Clifford algebra viewpoint
    Gresnigt, N. G.
    Renaud, P. F.
    Butler, P. H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2007, 16 (09): : 1519 - 1529