Rate of Weighted Statistical Convergence for Generalized Blending-Type Bernstein-Kantorovich Operators

被引:26
|
作者
Ozger, Faruk [1 ]
Aljimi, Ekrem [2 ]
Ersoy, Merve Temizer [3 ]
机构
[1] Izmir Katip Celebi Univ, Dept Engn Sci, TR-35620 Izmir, Turkey
[2] Publ Univ Kadri Zeka, Fac Appl Sci, Gjilan 60000, Kosovo
[3] Nisantasi Univ, Fac Engn & Architecture, Dept Software Engn, TR-34398 Istanbul, Turkey
关键词
weighted beta-statistical convergence; shape parameter alpha; shape parameter lambda; blending-type operators; computer graphics; APPROXIMATION; SUMMABILITY;
D O I
10.3390/math10122027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An alternative approach, known today as the Bernstein polynomials, to the Weierstrass uniform approximation theorem was provided by Bernstein. These basis polynomials have attained increasing momentum, especially in operator theory, integral equations and computer-aided geometric design. Motivated by the improvements of Bernstein polynomials in computational disciplines, we propose a new generalization of Bernstein-Kantorovich operators involving shape parameters lambda, alpha and a positive integer as an original extension of Bernstein-Kantorovich operators. The statistical approximation properties and the statistical rate of convergence are also obtained by means of a regular summability matrix. Using the Lipschitz-type maximal function, the modulus of continuity and modulus of smoothness, certain local approximation results are presented. Some approximation results in a weighted space are also studied. Finally, illustrative graphics that demonstrate the approximation behavior and consistency of the proposed operators are provided by a computer program.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] A-Statistical Approximation by the Generalized Kantorovich-Bernstein Type Rational Operators
    Ispir, Nurhayat
    Gupta, Vijay
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2008, 32 (01) : 87 - 97
  • [42] Pointwise estimate for linear combinations of Bernstein-Kantorovich operators
    Guo, SS
    Liu, LX
    Qi, QL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (01) : 135 - 147
  • [43] Blending-type approximation by generalized Lupa-Durrmeyer-type operators
    Goyal, Meenu
    Kajla, Arun
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (03): : 551 - 566
  • [44] Convergence analysis of modified Bernstein–Kantorovich type operators
    Abhishek Senapati
    Ajay Kumar
    Tanmoy Som
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3749 - 3764
  • [45] Bernstein-Kantorovich operators, approximation and shape preserving properties
    Acu, Ana-Maria
    Rasa, Ioan
    Steopoaie, Ancuta Emilia
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)
  • [46] Modified Bernstein-Kantorovich Operators Reproducing Affine Functions
    Zhang, Bin
    Yu, Dansheng
    Wang, Fengfeng
    FILOMAT, 2022, 36 (18) : 6187 - 6195
  • [47] Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 655 - 662
  • [48] The lower estimate for the linear combinations of Bernstein-Kantorovich operators
    Xie, Linsen
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (06) : 1150 - 1159
  • [49] Some Approximation Results by Bivariate Bernstein-Kantorovich Type Operators on a Triangular Domain
    Aslan, Resat
    Izgi, Aydin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (03): : 467 - 484
  • [50] Korovkin type theorem for Bernstein-Kantorovich operators via power summability method
    Braha, Naim L.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)