Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics

被引:8
|
作者
Palmblad, Magnus [9 ]
Boecker, Sebastian [1 ]
Degroeve, Sven [2 ,3 ]
Kohlbacher, Oliver [4 ]
Kall, Lukas [5 ]
Noble, William Stafford [6 ,7 ]
Wilhelm, Mathias [8 ]
机构
[1] Friedrich Schiller Univ, Fac Math & Comp Sci, D-07743 Jena, Germany
[2] VIB, VIB UGent Ctr Med Biotechnol, Ghent, Belgium
[3] Univ Ghent, Dept Biomol Med, B-9052 Ghent, Belgium
[4] Eberhard Karls Univ Tubingen, WSI ZBIT, D-72076 Tubingen, Germany
[5] Royal Inst Technol KTH, Sch Engn Sci Chem Biotechnol & Hlth, Sci Life Lab, S-17121 Solna, Sweden
[6] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[7] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[8] Tech Univ Munich TUM, Computat Mass Spectrometry, D-85354 Freising Weihenstephan, Germany
[9] Leiden Univ, Ctr Prote & Metabol, Med Ctr, NL-2300 RC Leiden, Netherlands
关键词
D O I
10.1021/acs.jproteome.1c00900
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Machine learning is increasingly applied in proteomics and metabolomics to predict molecular structure, function, and physicochemical properties, including behavior in chromatography, ion mobility, and tandem mass spectrometry. These must be described in sufficient detail to apply or evaluate the performance of trained models. Here we look at and interpret the recently published and general DOME (Data, Optimization, Model, Evaluation) recommendations for conducting and reporting on machine learning in the specific context of proteomics and metabolomics.
引用
收藏
页码:1204 / 1207
页数:4
相关论文
共 50 条
  • [31] Linking medicine to metabolomics and proteomics
    Karjalainen, Erkki J.
    [J]. EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2008, 34 (01) : S23 - S23
  • [32] Toward an Integrated Machine Learning Model of a Proteomics Experiment
    Neely, Benjamin A.
    Dorfer, Viktoria
    Martens, Lennart
    Bludau, Isabell
    Bouwmeester, Robbin
    Degroeve, Sven
    Deutsch, Eric W.
    Gessulat, Siegfried
    Kaell, Lukas
    Palczynski, Pawel
    Payne, Samuel H.
    Rehfeldt, Tobias Greisager
    Schmidt, Tobias
    Schwaemmle, Veit
    Uszkoreit, Julian
    Vizcaino, Juan Antonio
    Wilhelm, Mathias
    Palmblad, Magnus
    [J]. JOURNAL OF PROTEOME RESEARCH, 2023, : 681 - 696
  • [33] Investigation of machine learning techniques on proteomics: A comprehensive survey
    Sonsare, Pravinkumar M.
    Gunavathi, C.
    [J]. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2019, 149 : 54 - 69
  • [34] Expanding the coverage of spatial proteomics: a machine learning approach
    Sun, Huangqingbo
    Li, Jiayi
    Murphy, Robert F.
    [J]. BIOINFORMATICS, 2024, 40 (02)
  • [35] Machine Learning Analysis of Proteomics Data for Early Diagnosis
    Devetyarov, Dmitry
    [J]. MEDICAL INFORMATICS IN A UNITED AND HEALTHY EUROPE, 2009, 150 : 772 - 772
  • [36] Machine Learning Classification of Diagnostic Proteomics for Alzheimer Disease
    Tandon, Raghav
    Seyfried, Nicholas
    Mitchell, Cassie S.
    [J]. ANNALS OF NEUROLOGY, 2021, 90 : S91 - S91
  • [37] Machine Learning for Mass Spectrometry Data Analysis in Proteomics
    Li, Juntao
    Zhou, Kanglei
    Mu, Bingyu
    [J]. CURRENT PROTEOMICS, 2021, 18 (05) : 620 - 634
  • [38] Celebrating Women in Proteomics and Metabolomics
    Cristea, Ileana M.
    Eyers, Claire E.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2024, 23 (08) : 2675 - 2679
  • [39] Proteomics and Metabolomics for AKI Diagnosis
    Marx, David
    Metzger, Jochen
    Pejchinovski, Martin
    Gil, Ryan Bruce
    Frantzi, Maria
    Latosinska, Agnieszka
    Belczacka, Iwona
    Heinzmann, Silke Sophie
    Husi, Holger
    Zoidakis, Jerome
    Klingele, Matthias
    Herget-Rosenthal, Stefan
    [J]. SEMINARS IN NEPHROLOGY, 2018, 38 (01) : 63 - 87
  • [40] Exploring the Use of Machine Learning for Resume Recommendations
    Shestakova, Anna
    Corradini, Andrea
    [J]. SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 626 - 640