Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics

被引:8
|
作者
Palmblad, Magnus [9 ]
Boecker, Sebastian [1 ]
Degroeve, Sven [2 ,3 ]
Kohlbacher, Oliver [4 ]
Kall, Lukas [5 ]
Noble, William Stafford [6 ,7 ]
Wilhelm, Mathias [8 ]
机构
[1] Friedrich Schiller Univ, Fac Math & Comp Sci, D-07743 Jena, Germany
[2] VIB, VIB UGent Ctr Med Biotechnol, Ghent, Belgium
[3] Univ Ghent, Dept Biomol Med, B-9052 Ghent, Belgium
[4] Eberhard Karls Univ Tubingen, WSI ZBIT, D-72076 Tubingen, Germany
[5] Royal Inst Technol KTH, Sch Engn Sci Chem Biotechnol & Hlth, Sci Life Lab, S-17121 Solna, Sweden
[6] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[7] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[8] Tech Univ Munich TUM, Computat Mass Spectrometry, D-85354 Freising Weihenstephan, Germany
[9] Leiden Univ, Ctr Prote & Metabol, Med Ctr, NL-2300 RC Leiden, Netherlands
关键词
D O I
10.1021/acs.jproteome.1c00900
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Machine learning is increasingly applied in proteomics and metabolomics to predict molecular structure, function, and physicochemical properties, including behavior in chromatography, ion mobility, and tandem mass spectrometry. These must be described in sufficient detail to apply or evaluate the performance of trained models. Here we look at and interpret the recently published and general DOME (Data, Optimization, Model, Evaluation) recommendations for conducting and reporting on machine learning in the specific context of proteomics and metabolomics.
引用
收藏
页码:1204 / 1207
页数:4
相关论文
共 50 条
  • [1] Machine Learning in Proteomics and Metabolomics
    Neely, Benjamin A.
    Palmblad, Magnus
    [J]. JOURNAL OF PROTEOME RESEARCH, 2022, 21 (11) : 2553 - 2554
  • [2] DOME: recommendations for supervised machine learning validation in biology
    Walsh, Ian
    Fishman, Dmytro
    Garcia-Gasulla, Dario
    Titma, Tiina
    Pollastri, Gianluca
    Harrow, Jennifer
    Psomopoulos, Fotis E.
    Tosatto, Silvio C. E.
    [J]. NATURE METHODS, 2021, 18 (10) : 1122 - 1127
  • [3] DOME: recommendations for supervised machine learning validation in biology
    Ian Walsh
    Dmytro Fishman
    Dario Garcia-Gasulla
    Tiina Titma
    Gianluca Pollastri
    Jennifer Harrow
    Fotis E. Psomopoulos
    Silvio C. E. Tosatto
    [J]. Nature Methods, 2021, 18 : 1122 - 1127
  • [4] Author Correction: DOME: recommendations for supervised machine learning validation in biology
    Ian Walsh
    Dmytro Fishman
    Dario Garcia-Gasulla
    Tiina Titma
    Gianluca Pollastri
    Jennifer Harrow
    Fotis E. Psomopoulos
    Silvio C. E. Tosatto
    [J]. Nature Methods, 2021, 18 : 1409 - 1410
  • [5] Integrating Machine Learning in Metabolomics: A Path to Enhanced Diagnostics and Data Interpretation
    Xu, Yudian
    Cao, Linlin
    Chen, Yifan
    Zhang, Ziyue
    Liu, Wanshan
    Li, He
    Ding, Chenhuan
    Pu, Jun
    Qian, Kun
    Xu, Wei
    [J]. SMALL METHODS, 2024, 8 (12)
  • [6] Inquiry-based Learning of Proteomics and Metabolomics
    Nezhyva, Mariya
    Aerts, Jordan T.
    Sandbaumhu''ter, Friederike A.
    Vallianatou, Theodosia
    Jansson, Erik T.
    [J]. JOURNAL OF CHEMICAL EDUCATION, 2024, 101 (02) : 521 - 529
  • [7] The development of machine learning approaches in two-dimensional NMR data interpretation for metabolomics applications
    Pollak, Julie
    Mayonu, Moses
    Jiang, Lin
    Wang, Bo
    [J]. ANALYTICAL BIOCHEMISTRY, 2024, 695
  • [8] Proteomics and metabolomics
    Lambert, David G.
    [J]. ANAESTHESIA AND INTENSIVE CARE MEDICINE, 2013, 14 (04): : 169 - 170
  • [9] Proteomics and metabolomics
    Lambert, David G.
    [J]. ANAESTHESIA AND INTENSIVE CARE MEDICINE, 2010, 11 (09): : 372 - 373
  • [10] Machine learning methods for predictive proteomics
    Barla, Annalisa
    Jurman, Giuseppe
    Riccadonna, Samantha
    Merler, Stefano
    Chierici, Marco
    Furlanello, Cesare
    [J]. BRIEFINGS IN BIOINFORMATICS, 2008, 9 (02) : 119 - 128