Counting periodic solutions of the forced pendulum equation

被引:8
|
作者
Ortega, R [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Math & Astron, E-18071 Granada, Spain
关键词
pendulum; zeros; holomorphic functions;
D O I
10.1016/S0362-546X(99)00169-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The complex analysis, called the Jensen's inequality, was applied with the theory of conformal mappings to the forced pendulum equation. The result is an upper estimate on the number of periodic solutions. Theorems are presented to prove the method.
引用
收藏
页码:1055 / 1062
页数:8
相关论文
共 50 条
  • [21] EVEN AND ODD HARMONIC SOLUTIONS OF THE FORCED PENDULUM EQUATION
    SCHMITT, BV
    SARI, N
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1984, 3 (06): : 979 - 993
  • [22] Existence of Periodic Solutions for the Forced Pendulum Equations of Variable Length
    Hujun Yang
    Xiaoling Han
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [23] Stable and Unstable Periodic Solutions of the Forced Pendulum of Variable Length
    Liang, Zaitao
    Zhou, Zhongcheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04): : 791 - 806
  • [24] EXISTENCE OF AT LEAST TWO PERIODIC SOLUTIONS OF THE FORCED RELATIVISTIC PENDULUM
    Bereanu, Cristian
    Torres, Pedro J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (08) : 2713 - 2719
  • [25] ON PERIODIC-SOLUTIONS OF FORCED PENDULUM-LIKE EQUATIONS
    FOURNIER, G
    MAWHIN, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 60 (03) : 381 - 395
  • [26] PERIODIC SOLUTIONS OF A FORCED RELATIVISTIC PENDULUM VIA TWIST DYNAMICS
    Maro, Stefano
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 42 (01) : 51 - 75
  • [27] Existence of Periodic Solutions for the Forced Pendulum Equations of Variable Length
    Yang, Hujun
    Han, Xiaoling
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
  • [28] PERIODIC-SOLUTIONS OF A FORCED LIENARD EQUATION
    BURTON, TA
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 : 341 - 350
  • [29] On the existence of periodic solutions of a forced duffing equation
    Lu, CQ
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, : 88 - 91
  • [30] High energy rotation type solutions of the forced pendulum equation
    Felmer, Patricio
    de Laire, Andre
    Martinez, Salome
    Tanaka, Kazunaga
    NONLINEARITY, 2013, 26 (05) : 1473 - 1499