Antimicrobial activity of the combination (Nano-Bio) of Artemisia absinthium with copper nanoparticles

被引:9
|
作者
Celebi, Ozgur [1 ]
Cinisli, Kagan Tolga [1 ]
Celebi, Demet [2 ]
机构
[1] Ataturk Univ, Dept Med Microbiol, Fac Med, TR-25240 Erzurum, Turkey
[2] Ataturk Univ, Dept Med Microbiol, Fac Vet Med, Erzurum, Turkey
关键词
Copper nanoparticles; Nano-bio; Artemisia absinthium; Antimicrobial; ESSENTIAL OILS; ANTIOXIDANT; RESISTANCE; PLANTS;
D O I
10.1016/j.matpr.2021.01.824
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanoparticles show the lowest level of toxicity in the life cycle and ecosystem. Therefore, using these substances to combat pathogens may be an appropriate choice. Artemisia absinthium is traditionally used as an anthelmintic, antiseptic, antispasmodic, and worldwide for bacillus dysentery. The oil composition was analyzed by gas chromatography: mass spectrometry. Then, a nano-bio formulation was formed by inoculating a copper nanoparticle (50, 100 & micro;g / ml) into the plant oil extract. Microorganisms were provided by Atat & uuml;rk University Research Hospital. Examples were Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus epidermidis, Acinetobacter baumannii, Staphylococcus aureus, Enterobacter aerugenes, Candida albicans, and E.coli. Minimum inhibitory concentration values were determined for Pseudomonas aeruginosa (MIC = 500 & micro;g / ml), Klebsiella pneumoniae (MIC = 500 & micro;g / ml), Proteus mirabilis (MIC = 500 & micro;g / ml). Staphylococcus epidermidis (MIC < 1.95 & micro;g / ml), Acinetobacter baumannii (MIC = 500 & micro;g / ml), Staphylococcus aureus (MIC < 125 & micro;g / ml), Enterobacter aerugenes (MIC = 500 & micro;g / ml), E.coli (MIC = 500 & micro;g / ml), Candida albicans (MIC = 500 & micro;g / ml), respectively. Anti-microbial activity of camphor extract of essential oil was tested by disk diffusion method. Plant extracts should be considered when used in part of the substitution process. A stock suspension was prepared by resuspending the nanoparticles in double distilled water to obtain a final concentration. And artemisia mixed CuO nanoparticle was determined by applying standard bacteriological methods with agar dilution method against 9 microorganisms isolated. Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus epidermidis, Acinetobacter baumannii, Staphylococcus aureus, Enterobacter aerugenes, Candida albicans, and E.coli. Values (& micro;g / ml) were 50, 100 copper. Their use as antimicrobial compounds to combat a large number of resistant pathogens is promising for alternative therapy. (c) 2020 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the Second International Symposium "Functional Nanomaterials in Industrial Applications: Academy-Industry Meet".
引用
收藏
页码:3809 / 3813
页数:5
相关论文
共 50 条
  • [21] Analytical investigation of nano-bio interfacial protein mediation for fibroblast adhesion on hydroxyapatite nanoparticles
    Liu, Zizhen
    Zhou, Yanni
    Kimura, Reo
    Tagaya, Motohiro
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (05) : 4025 - 4034
  • [22] Nano-Bio Interaction and Antibacterial Mechanism of Engineered Metal Nanoparticles: Fundamentals and Current Understanding
    Tiwari, Atul Kumar
    Pandey, Prem C.
    Gupta, Munesh Kumar
    Narayan, Roger J.
    JOURNAL OF CLUSTER SCIENCE, 2025, 36 (01)
  • [23] A Typical Nano-Bio Interaction of Cu doped ZnO Nanoparticles with Escherichia coli DNA
    Das, Sumita
    Devi, P. Sujatha
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (03) : 9706 - 9714
  • [24] Probing the Nature of Charge Transfer at Nano-Bio Interfaces: Peptides on Metal Oxide Nanoparticles
    Tarakeshwar, Pilarisetty
    Palma, Julio L.
    Holland, Gregory P.
    Fromme, Petra
    Yarger, Jeffery L.
    Mujica, Vladimiro
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (20): : 3555 - 3559
  • [25] Modeling the interaction of polymeric nanoparticles functionalized with cell penetrating peptides at the nano-bio interface
    Chiu, Jasper Z. S.
    Castillo, Alejandra M.
    Tucker, Ian G.
    Radunskaya, Ami E.
    McDowell, Arlene
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 217
  • [26] Nano-bio interaction of magnetic nanoparticles with cells in a tumor at the single-cell level
    Pershina, Alexandra G.
    V. Efimova, Lina
    Brikunova, Olga Y.
    V. Nevskaya, Kseniya
    V. Sukhinina, Ekaterina
    Hmelevskaya, Ekaterina S.
    Demin, Alexander M.
    Naumenko, Victor A.
    Malkeyeva, Dina
    Kiseleva, Elena
    Khozyainova, Anna A.
    Menyailo, Maxim E.
    V. Denisov, Evgeny
    Volegov, Aleksey S.
    Uimin, Mikhail A.
    Krasnov, Victor P.
    Ogorodova, Ludmila M.
    NANO TODAY, 2024, 56
  • [27] Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions
    Qin, Mengmeng
    Zhang, Jian
    Li, Minghui
    Yang, Dan
    Liu, Dechun
    Song, Siyang
    Fu, Jijun
    Zhang, Hua
    Dai, Wenbing
    Wang, Xueqing
    Wang, Yiguang
    He, Bing
    Zhang, Qiang
    THERANOSTICS, 2020, 10 (03): : 1213 - 1229
  • [28] Copper nanoparticles with high antimicrobial activity
    Bogdanovic, Una
    Lazic, Vesna
    Vodnik, Vesna
    Budimir, Milica
    Markovic, Zoran
    Dimitrijevic, Suzana
    MATERIALS LETTERS, 2014, 128 : 75 - 78
  • [29] Synthesis and antimicrobial activity of copper nanoparticles
    Ramyadevi, Jeyaraman
    Jeyasubramanian, Kadarkaraithangam
    Marikani, Arumugam
    Rajakumar, Govindasamy
    Rahuman, Abdul Abdul
    MATERIALS LETTERS, 2012, 71 : 114 - 116
  • [30] Controlled Nano-Bio Interface of Functional Nanoprobes for in Vivo Monitoring Enzyme Activity in Tumors
    Sun, Ziyan
    Cheng, Kai
    Yao, Yuyu
    Wu, Fengyu
    Fung, Jonathan
    Chen, Hao
    Ma, Xiaowei
    Tu, Yingfeng
    Xing, Lei
    Xia, Liming
    Cheng, Zhen
    ACS NANO, 2019, 13 (02) : 1153 - 1167