Stochastic elliptic-parabolic system arising in porous media

被引:0
|
作者
Bessaih, Hakima [1 ]
Cohn, Cynthia [2 ]
Landoulsi, Oussama [1 ]
机构
[1] Florida Int Univ, Math & Stat, 11200 SW 8th St, Miami, FL 33199 USA
[2] Univ Wyoming, Math & Stat, Univ Ave, Laramie, WY 82071 USA
关键词
Porous medium; flow and transport; elliptic-parabolic system; noise; stochastic processes; MISCIBLE FLUID-FLOWS; DISPLACEMENT;
D O I
10.1142/S0219493722400226
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of a pathwise weak solution to the single-phase, miscible displacement of one incompressible fluid by another in a porous medium with random forcing. Our system is described by a parabolic concentration equation driven by an additive noise coupled with an elliptic pressure equation. We use a pathwise argument combined with Schauder's fixed point theorem.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] ELLIPTIC-PARABOLIC EQUATIONS OF SECOND ORDER
    PHILLIPS, RS
    SARASON, L
    JOURNAL OF MATHEMATICS AND MECHANICS, 1968, 17 (09): : 891 - &
  • [22] Viscosity solutions for elliptic-parabolic problems
    Paola Mannucci
    Juan Luis Vazquez
    Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 75 - 90
  • [23] ON AN ELLIPTIC-PARABOLIC EQUATION WITH DISCONTINUED COEFFICIENTS
    FRANCIOSI, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1983, 2C (01): : 63 - 75
  • [24] Viscosity solutions for elliptic-parabolic problems
    Mannucci, Paola
    Vazquez, Juan Luis
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (1-2): : 75 - 90
  • [25] Homogenization of degenerate elliptic-parabolic equations
    Paronetto, F
    ASYMPTOTIC ANALYSIS, 2004, 37 (01) : 21 - 56
  • [26] ELLIPTIC-PARABOLIC EQUATIONS OF SECOND ORDER
    PHILLIPS, RS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (07): : 1071 - &
  • [27] On moving boundaries in elliptic-parabolic systems
    Escher, J
    EVOLUTION EQUATIONS: APPLICATIONS TO PHYSICS, INDUSTRY, LIFE SCIENCES AND ECONOMICS, 2003, 55 : 149 - 156
  • [28] Numerical analysis of nonlinear elliptic-parabolic equations
    Maitre, E
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (01): : 143 - 153
  • [29] Asymmetry and Condition Number of an Elliptic-Parabolic System for Biological Network Formation
    Astuto, Clarissa
    Boffi, Daniele
    Haskovec, Jan
    Markowich, Peter
    Russo, Giovanni
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025, 7 (01) : 78 - 94
  • [30] Solvability of a Elliptic-Parabolic (Hyperbolic) Type Chemotaxis System in a Bounded Domain
    Xu Zijun
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 31 (04): : 322 - 332