Probing the screening of the Casimir interaction with optical tweezers

被引:11
|
作者
Pires, L. B. [1 ,2 ,3 ]
Ether, D. S. [1 ,2 ,3 ]
Spreng, B. [4 ,5 ]
Araujo, G. R. S. [6 ]
Decca, R. S. [7 ]
Dutra, R. S. [8 ]
Borges, M. [1 ,2 ,3 ]
Rosa, F. S. S. [3 ]
Ingold, G. L. [4 ]
Moura, M. J. B. [9 ]
Frases, S. [6 ]
Pontes, B. [1 ,2 ,10 ]
Nussenzveig, H. M. [1 ,2 ,3 ]
Reynaud, S. [11 ]
Viana, N. B. [1 ,2 ,3 ]
Neto, P. A. Maia [1 ,2 ,3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Ciencias Biomed, LPO COPEA, BR-21941902 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio de Janeiro, CENABIO Ctr Nacl Biol Estrutural & Bioimagem, BR-21941902 Rio De Janeiro, RJ, Brazil
[3] Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, RJ, Brazil
[4] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[5] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[6] Inst Biofis Carlos Chagas Filho, BR-21941901 Rio De Janeiro, RJ, Brazil
[7] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA
[8] Inst Fed Educ Ciencia & Tecnol, LISComp IFRJ, Rua Sebastao Lacerda, BR-26600000 Paracambi, RJ, Brazil
[9] Pontificia Univ Catolica Rio de Janeiro, Dept Engn Mecan, BR-22451900 Rio De Janeiro, RJ, Brazil
[10] Univ Fed Rio de Janeiro, Inst Ciencias Biomed, BR-21941902 Rio De Janeiro, RJ, Brazil
[11] ENS PSL Univ, Lab Kastler Brossel, Sorbonne Univ, CNRS,Coll France, Campus Pierre & Marie Curie, F-75252 Paris, France
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
DER-WAALS FORCES; INTERNAL-REFLECTION MICROSCOPY; SPHERICAL COLLOIDAL PARTICLES; TRAP STIFFNESS CALIBRATION; ROUGHNESS CORRECTION; POSITION DETECTION; SURFACE-ROUGHNESS; REFRACTIVE-INDEX; ION ADSORPTION; FREE-ENERGY;
D O I
10.1103/PhysRevResearch.3.033037
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We measure the colloidal interaction between two silica microspheres in an aqueous solution in the distance range from 0.2 to 0.5 mu m with the help of optical tweezers. When employing a sample with a low salt concentration, the resulting interaction is dominated by the repulsive double-layer interaction which is fully characterized. The double-layer interaction is suppressed when adding 0.22M of salt to our sample, thus leading to a purely attractive Casimir signal. When analyzing the experimental data for the potential energy and force, we find good agreement with theoretical results based on the scattering approach. At the distance range probed experimentally, the interaction arises mainly from the unscreened transverse magnetic contribution in the zero-frequency limit, with nonzero Matsubara frequencies providing a negligible contribution. In contrast, such unscreened contribution is not included by the standard theoretical model of the Casimir interaction in electrolyte solutions, in which the zero-frequency term is treated separately as an electrostatic fluctuational effect. As a consequence, the resulting attraction is too weak in this standard model, by approximately one order of magnitude, to explain the experimental data. Overall, our experimental results shed light on the nature of the thermal zero-frequency contribution and indicate that the Casimir attraction across polar liquids has a longer range than previously predicted.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Probing Structure and Mechanics of Yeast Prion Proteins with Optical Tweezers
    Castro, Carlos E.
    Dong, Jijun
    Boyce, Mary
    Lindquist, Susan
    Lang, Matt
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 38A - 39A
  • [22] Probing colloidal forces in polymer solution using optical tweezers
    Ouyang, HD
    Valentine, MT
    Dewalt, LE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 215 - COLL
  • [23] Probing interactions between colloidal particles with oscillating optical tweezers
    Mellor, CD
    Sharp, MA
    Bain, CD
    Ward, AD
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [24] Direct Probing of DNA/Nanopore Interactions Using Optical Tweezers
    Squires, Allison
    Wanunu, Meni
    Meller, Amit
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 645A - 645A
  • [25] Optical nanofiber integrated into an optical tweezers for particle manipulation and in-situ fiber probing
    Gusachenko, Ivan
    Frawley, Mary. C.
    Truong, Viet. G.
    Chormaic, Sile Nic
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XI, 2014, 9164
  • [26] Constructing and probing biomimetic models of the actin cortex with holographic optical tweezers
    Schmitz, CHJ
    Curtis, JE
    Spatz, JP
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION, 2004, 5514 : 446 - 454
  • [27] Complex Fluids: Probing Mechanical Properties of Biological Systems with Optical Tweezers
    Ou-Yang, H. Daniel
    Wei, Ming-Tzo
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 61, 2010, 61 : 421 - 440
  • [28] Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers
    Ketelaar, Tijs
    van der Honing, Hannie S.
    Emons, Anne Mie C.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2010, 38 : 823 - 828
  • [29] Probing the Viscoelasticity of Collagen Solutions with Optical-Tweezers-Based Microrheology
    Shayegan, Marjan
    Forde, Nancy R.
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 483 - 484
  • [30] Probing the bulk viscosity of particles using aerosol optical tweezers.
    Power, Rory
    Bones, David L.
    Reid, Jonathan P.
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION IX, 2012, 8458