Instrumental variable estimation of a threshold model

被引:471
|
作者
Caner, M
Hansen, BE
机构
[1] Univ Pittsburgh, Dept Econ, Pittsburgh, PA 15260 USA
[2] Univ Wisconsin, Madison, WI 53706 USA
关键词
D O I
10.1017/S0266466604205011
中图分类号
F [经济];
学科分类号
02 ;
摘要
Threshold models (sample splitting models) have wide application in economics. Existing estimation methods are confined to regression models, which require that all right-hand-side variables are exogenous. This paper considers a model with endogenous variables but an exogenous threshold variable. We develop a two-stage least squares estimator of the threshold parameter and a generalized method of moments estimator of the slope parameters. We show that these estimators are consistent, and we derive the asymptotic distribution of the estimators. The threshold estimate has the same distribution as for the regression case (Hansen, 2000, Econometrica 68, 575-603), with a different scale. The slope parameter estimates are asymptotically normal with conventional covariance matrices. We investigate our distribution theory with a Monte Carlo simulation that indicates the applicability of the methods.
引用
收藏
页码:813 / 843
页数:31
相关论文
共 50 条
  • [21] INSTRUMENTAL VARIABLE ESTIMATION IN A DATA RICH ENVIRONMENT
    Bai, Jushan
    Ng, Serena
    [J]. ECONOMETRIC THEORY, 2010, 26 (06) : 1577 - 1606
  • [22] Instrumental variable estimation of the effect of prayer on depression
    Denny, Kevin J.
    [J]. SOCIAL SCIENCE & MEDICINE, 2011, 73 (08) : 1194 - 1199
  • [23] Instrumental variable estimation of a nonlinear Taylor rule
    Koustas, Zisimos
    Lamarche, Jean-Francois
    [J]. EMPIRICAL ECONOMICS, 2012, 42 (01) : 1 - 20
  • [24] INSTRUMENTAL VARIABLE METHODS FOR ARMA SPECTRAL ESTIMATION
    FRIEDLANDER, B
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1983, 31 (02): : 404 - 415
  • [25] ADAPTIVE INSTRUMENTAL VARIABLE METHODS FOR FREQUENCY ESTIMATION
    KANGAS, A
    STOICA, P
    SODERSTROM, T
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1992, 6 (05) : 441 - 469
  • [26] OPTIMAL INSTRUMENTAL VARIABLE ESTIMATION AND APPROXIMATE IMPLEMENTATIONS
    STOICA, P
    SODERSTROM, T
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (07) : 757 - 772
  • [27] Instrumental variable estimation of a nonlinear Taylor rule
    Zisimos Koustas
    Jean-François Lamarche
    [J]. Empirical Economics, 2012, 42 : 1 - 20
  • [28] Semiparametric modeling and estimation of instrumental variable models
    Crib, Siddhartha
    Greenberg, Edward
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2007, 16 (01) : 86 - 114
  • [29] Instrumental Variable Estimation with a Stochastic Monotonicity Assumption
    Small, Dylan S.
    Tan, Zhiqiang
    Ramsahai, Roland R.
    Lorch, Scott A.
    Brookhart, M. Alan
    [J]. STATISTICAL SCIENCE, 2017, 32 (04) : 561 - 579
  • [30] Instrumental variable estimation with heteroskedasticity and many instruments
    Hausman, Jerry A.
    Newey, Whitney K.
    Woutersen, Tiemen
    Chao, John C.
    Swanson, Norman R.
    [J]. QUANTITATIVE ECONOMICS, 2012, 3 (02) : 211 - 255