Implicit Rate-Constrained Optimization of Non-decomposable Objectives

被引:0
|
作者
Kumar, Abhishek [1 ]
Narasimhan, Harikrishna [1 ]
Cotter, Andrew [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
关键词
MAXIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider a popular family of constrained optimization problems arising in machine learning that involve optimizing a non-decomposable evaluation metric with a certain thresholded form, while constraining another metric of interest. Examples of such problems include optimizing the false negative rate at a fixed false positive rate, optimizing precision at a fixed recall, optimizing the area under the precision-recall or ROC curves, etc. Our key idea is to formulate a rate-constrained optimization that expresses the threshold parameter as a function of the model parameters via the Implicit Function theorem. We show how the resulting optimization problem can be solved using standard gradient based methods. Experiments on benchmark datasets demonstrate the effectiveness of our proposed method over existing state-of-the-art approaches for these problems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Optimizing Non-Decomposable Evaluation Metrics for Neural Machine Translation
    Shi-Qi Shen
    Yang Liu
    Mao-Song Sun
    Journal of Computer Science and Technology, 2017, 32 : 796 - 804
  • [22] EQUIVALENCY OF MSE- AND RATE-CONSTRAINED POWER OPTIMIZATION METHODS FOR DISTRIBUTED BEAMFORMING
    Rahimi, Razgar
    ShahbazPanahi, Shahram
    Ottersten, Bjoern
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 589 - 593
  • [23] Optimizing Non-decomposable Performance Measures: A Tale of Two Classes
    Narasimhan, Harikrishna
    Kar, Purushottam
    Jain, Prateek
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 199 - 208
  • [24] Online and Stochastic Gradient Methods for Non-decomposable Loss Functions
    Kar, Purushottam
    Narasimhan, Harikrishna
    Jain, Prateek
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [25] Rate-constrained block matching algorithm
    Bayazit, U
    Pearlman, WA
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '97, PTS 1-2, 1997, 3024 : 1110 - 1121
  • [26] Distributed Rate-Constrained LCMV Beamforming
    Zhang, Jie
    Koutrouvelis, Andreas, I
    Heusdens, Richard
    Hendriks, Richard C.
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 675 - 679
  • [27] CONSTRUCTION OF NON-DECOMPOSABLE POSITIVE DEFINITE UNIMODULAR QUADRATIC FORMS
    朱福祖
    Science China Mathematics, 1987, (01) : 19 - 31
  • [28] Experiencing Megaco protocol for controlling non-decomposable VoIP gateways
    Conte, A
    Anquetil, LP
    Levy, T
    IEEE INTERNATIONAL CONFERENCE ON NETWORKS 2000 (ICON 2000), PROCEEDINGS: NETWORKING TRENDS AND CHALLENGES IN THE NEW MILLENNIUM, 2000, : 105 - 111
  • [29] ExactBoost: Directly Boosting the Margin in Combinatorial and Non-decomposable Metrics
    Csillag, Aniel
    Piazza, Carolina
    Rarnos, Thiago
    Romano, Joao Vitor
    Oliveira, Roberto
    Orenstein, Paulo
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [30] Symmetrized non-decomposable approximations of the non-additive kinetic energy functional
    Polak, Elias
    Englert, Tanguy
    Gander, Martin J.
    Wesolowski, Tomasz A.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (17):