On the partial terminal Steiner tree problem

被引:13
|
作者
Hsieh, Sun-Yuan [1 ]
Gao, Huang-Ming [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
来源
JOURNAL OF SUPERCOMPUTING | 2007年 / 41卷 / 01期
关键词
the Steiner tree problem; the partial terminal Steiner tree problem; NP-complete; MAX SNP-hard; approximation algorithms;
D O I
10.1007/s11227-007-0102-z
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate a practical variant of the well-known graph Steiner tree problem. For a complete graph G = (V, E) with length function l : E -> R+ and two vertex subsets R subset of V and R ' subset of R, a partial terminal Steiner tree is a Steiner tree which contains all vertices in R such that all vertices in R backslash R ' belong to the leaves of this Steiner tree. The partial terminal Steiner tree problem is to find a partial terminal Steiner tree T whose total lengths Sigma((u, v)epsilon T) l(u, v) is minimum. In this paper, we show that the problem is both NP-complete and MAX SNP-hard when the lengths of edges are restricted to either 1 or 2. We also provide an approximation algorithm for the problem.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 50 条
  • [31] Probabilistic Models for the Steiner Tree Problem
    Paschos, Vangelis Th.
    Telelis, Orestis A.
    Zissimopoulos, Vassilis
    NETWORKS, 2010, 56 (01) : 39 - 49
  • [32] On the history of the Euclidean Steiner tree problem
    Marcus Brazil
    Ronald L. Graham
    Doreen A. Thomas
    Martin Zachariasen
    Archive for History of Exact Sciences, 2014, 68 : 327 - 354
  • [33] Approximations for a Bottleneck Steiner Tree Problem
    Algorithmica, 2002, 32 : 554 - 561
  • [34] The Steiner tree problem with hop constraints
    S. Voß
    Annals of Operations Research, 1999, 86 : 321 - 345
  • [35] Approximations for a bottleneck Steiner tree problem
    Wang, L
    Du, DZ
    ALGORITHMICA, 2002, 32 (04) : 554 - 561
  • [36] Parallel Algorithms for Steiner Tree Problem
    Park, Joon-Sang
    Ro, Won W.
    Lee, Handuck
    Park, Neungsoo
    THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 453 - +
  • [37] THE 1-STEINER TREE PROBLEM
    GEORGAKOPOULOS, G
    PAPADIMITRIOU, CH
    JOURNAL OF ALGORITHMS, 1987, 8 (01) : 122 - 130
  • [38] THE STEINER TREE PROBLEM AND HOMOGENEOUS SETS
    DATRI, A
    MOSCARINI, M
    SASSANO, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 324 : 249 - 261
  • [39] On the approximability of the Steiner tree problem in phylogeny
    Fernandez-Baca, D
    Lagergren, J
    ALGORITHMS AND COMPUTATION, 1996, 1178 : 65 - 74
  • [40] REDUCTIONS FOR THE RECTILINEAR STEINER TREE PROBLEM
    WINTER, P
    NETWORKS, 1995, 26 (04) : 187 - 198