A note on Kernel density estimation with auxiliary information

被引:45
|
作者
Zhang, B [1 ]
机构
[1] Univ Toledo, Dept Math, Toledo, OH 43606 USA
关键词
asymptotic normality; bandwidth; empirical likelihood;
D O I
10.1080/03610929808832647
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well-known that the method of empirical likelihood can be employed to get sharper inferences on many functionals of the population distribution by making effective use of auxiliary information available in a nonparametric model. In this paper, we show that in the context of estimating a population density function, the modified kernel density estimator which makes use of the knowledge of auxiliary information does not sharpen our inferences on the population density function in the sense that the modified kernel density estimator is first order equivalent to the standard kernel density estimator which does not utilize auxiliary information.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] Kernel density estimation from complex surveys in the presence of complete auxiliary information
    Sayed A. Mostafa
    Ibrahim A. Ahmad
    [J]. Metrika, 2019, 82 : 295 - 338
  • [2] Kernel density estimation from complex surveys in the presence of complete auxiliary information
    Mostafa, Sayed A.
    Ahmad, Ibrahim A.
    [J]. METRIKA, 2019, 82 (03) : 295 - 338
  • [3] KERNEL DENSITY ESTIMATION WITH MISSING DATA AND AUXILIARY VARIABLES
    Dubnicka, Suzanne R.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2009, 51 (03) : 247 - 270
  • [4] A note on kernel density estimation at a parametric rate
    Chacon, J. E.
    Montanero, J.
    Nogales, A. G.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (01) : 13 - 21
  • [5] A Correction Note on Improvement in Variance Estimation Using Auxiliary Information
    Grover, Lovleen Kumar
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (05) : 753 - 764
  • [6] A note on density estimation via the hyperbolic secant kernel estimator
    Bakouch, Hassan S.
    Elsamadony, Ola A.
    Chesneau, Christophe
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (08): : 2007 - 2019
  • [7] A note on application of kernel derivatives in density estimation with the univariate case
    Siloko, I. U.
    Ikpotokin, O.
    Oyegue, F. O.
    Ishiekwene, C. C.
    Afere, B. A. E.
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2019, 22 (03): : 415 - 423
  • [8] ESTIMATION OF MUTUAL INFORMATION USING KERNEL DENSITY ESTIMATORS
    MOON, YI
    RAJAGOPALAN, B
    LALL, U
    [J]. PHYSICAL REVIEW E, 1995, 52 (03): : 2318 - 2321
  • [9] A note on residual-based empirical likelihood kernel density estimation
    Muhsal, Birte
    Neumeyer, Natalie
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1386 - 1401
  • [10] A note on kernel density estimation for non-negative random variables
    Sclocco T.
    Di Marzio M.
    [J]. Statistical Methods and Applications, 2001, 10 (1-3) : 67 - 79