A note on application of kernel derivatives in density estimation with the univariate case

被引:1
|
作者
Siloko, I. U. [1 ]
Ikpotokin, O. [2 ]
Oyegue, F. O. [3 ]
Ishiekwene, C. C. [3 ]
Afere, B. A. E. [4 ]
机构
[1] Edo Univ, Dept Math & Comp Sci, Iyamho 312102, Nigeria
[2] Ambrose Alli Univ, Dept Math & Stat, Ekpoma, Nigeria
[3] Univ Benin, Dept Math, Benin, Nigeria
[4] Fed Polytech Idah, Dept Math & Stat, Idah, Nigeria
来源
关键词
Bandwidth; Polynomial; Kernels; Derivatives; Variance; Bias; AMISE; BANDWIDTH CHOICE;
D O I
10.1080/09720510.2018.1524956
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the application of kernel density derivatives to real life data. Kernel density derivatives estimation is very fundamental and critical in statistical data analysis especially for exploratory and visualization purposes. As a result of the wide range of its applications, appropriate estimation of the kernel derivatives from its function and locating some statistical features such as bumps and modes of a set of observation is of a great importance. We consider the first and second derivative of the Gaussian kernel and compare their results in terms of performance using asymptotic mean integrated squared error as the error criterion function. The results of the comparison shows that as the derivative of the kernel function increases, the AMISE decreases with an increase in the smoothing parameter.
引用
收藏
页码:415 / 423
页数:9
相关论文
共 50 条
  • [1] A note on Kernel density estimation with auxiliary information
    Zhang, B
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (01) : 1 - 11
  • [2] A note on kernel density estimation at a parametric rate
    Chacon, J. E.
    Montanero, J.
    Nogales, A. G.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (01) : 13 - 21
  • [3] Kernel density estimation and its application
    Weglarczyk, Stanislaw
    [J]. XLVIII SEMINAR OF APPLIED MATHEMATICS, 2018, 23
  • [4] Kernel density estimation: the general case
    Campos, VSM
    Dorea, CCY
    [J]. STATISTICS & PROBABILITY LETTERS, 2001, 55 (02) : 173 - 180
  • [5] Application of Nonparametric Kernel Density Estimation by Bootstrapping
    Li Dewang
    Qiu Meilan
    [J]. RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, PTS 1 AND 2, 2011, : 1443 - 1447
  • [6] Univariate Algebraic Kernel and Application to Arrangements
    Lazard, Sylvain
    Penaranda, Luis
    Tsigaridas, Elias
    [J]. EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2009, 5526 : 209 - +
  • [7] A note on density estimation via the hyperbolic secant kernel estimator
    Bakouch, Hassan S.
    Elsamadony, Ola A.
    Chesneau, Christophe
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (08): : 2007 - 2019
  • [8] Development and application of traffic accident density estimation models using kernel density estimation
    Hashimoto, Seiji
    Yoshiki, Syuji
    Saeki, Ryoko
    Mimura, Yasuhiro
    Ando, Ryosuke
    Nanba, Shutaro
    [J]. JOURNAL OF TRAFFIC AND TRANSPORTATION ENGINEERING-ENGLISH EDITION, 2016, 3 (03) : 262 - 270
  • [9] Development and application of traffic accident density estimation models using kernel density estimation
    Seiji Hashimoto
    Syuji Yoshiki
    Ryoko Saeki
    Yasuhiro Mimura
    Ryosuke Ando
    Shutaro Nanba
    [J]. Journal of Traffic and Transportation Engineering(English Edition), 2016, 3 (03) : 262 - 270
  • [10] Root n bandwidth selectors for kernel estimation of density derivatives
    Wu, TJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 536 - 547