Image super-resolution via a densely connected recursive network

被引:9
|
作者
Feng, Zhanxiang [1 ]
Lai, Jianhuang [2 ,3 ]
Xie, Xiaohua [2 ,3 ]
Zhu, Junyong [2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Guangdong Key Lab Informat Secur Technol, Guangzhou 510006, Guangdong, Peoples R China
关键词
Image super-resolution; Deep learning; Enhanced dense unit; Recursive structure; Residual learning;
D O I
10.1016/j.neucom.2018.07.076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The single-image super-resolution techniques (SISR) have been significantly promoted by deep networks. However, the storage and computation complexities of deep models increase dramatically alongside with the reconstruction performance. This paper proposes a densely connected recursive network (DCRN) to trade off the performance and complexity. We introduce an enhanced dense unit by removing the batch normalization (BN) layers and employing the squeeze-and-excitation (SE) structure. A recursive architecture is also adopted to control the parameters of deep networks. Moreover, a de-convolution based residual learning method is proposed to accelerate the residual feature extraction process. The experimental results validate the efficiency of the proposed approach. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 276
页数:7
相关论文
共 50 条
  • [41] Image Super-resolution via Progressive Cascading Residual Network
    Ahn, Namhyuk
    Kang, Byungkon
    Sohn, Kyung-Ah
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 904 - 912
  • [42] Single image super-resolution via a ternary attention network
    Yang, Lianping
    Tang, Jian
    Niu, Ben
    Fu, Haoyue
    Zhu, Hegui
    Jiang, Wuming
    Wang, Xin
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13067 - 13081
  • [43] Image Super-Resolution via Deep Feature Recalibration Network
    Xin, Jingwei
    Jiang, Xinrui
    Wang, Nannan
    Li, Jie
    Gao, Xinbo
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 256 - 267
  • [44] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA CONVOLUTIONAL NEURAL NETWORK
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Wan, Shuai
    Hou, Junhui
    Du, Qian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4297 - 4301
  • [45] Omnidirectional Image Super-Resolution via Latitude Adaptive Network
    Deng, Xin
    Wang, Hao
    Xu, Mai
    Li, Li
    Wang, Zulin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4108 - 4120
  • [46] Single image super-resolution via a ternary attention network
    Lianping Yang
    Jian Tang
    Ben Niu
    Haoyue Fu
    Hegui Zhu
    Wuming Jiang
    Xin Wang
    Applied Intelligence, 2023, 53 : 13067 - 13081
  • [47] Image Super-resolution Based on Recursive Residual Networks
    Zhou D.-W.
    Zhao L.-J.
    Duan R.
    Chai X.-L.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (06): : 1157 - 1165
  • [48] Feedback Network for Image Super-Resolution
    Li, Zhen
    Yang, Jinglei
    Liu, Zheng
    Yang, Xiaomin
    Jeon, Gwanggil
    Wu, Wei
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3862 - 3871
  • [49] Iterative Network for Image Super-Resolution
    Liu, Yuqing
    Wang, Shiqi
    Zhang, Jian
    Wang, Shanshe
    Ma, Siwei
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2259 - 2272
  • [50] SAR IMAGE SUPER-RESOLUTION BASE ON WEIGHTED DENSE CONNECTED CONVOLUTIONAL NETWORK
    Yu, Jianwen
    Li, Wenchao
    Li, Zhongyu
    Wu, Junjie
    Yang, Haiguang
    Yang, Jianyu
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2101 - 2104